phân tích đa thức thành nhân tử
a, 6x^2 + 7xy + 2y^2
b, 9x^2 - 9xy - 4y^2
c, x^2 - y^2 + 10x - 6y + 16
phân tích đa thức thành nhân tử
a,6x2 + 7xy + 2y2
b,) x2 – y2 + 10x – 6y + 16
c,4x4 + y4
a) 6x² + 7xy + 2y²
= 6x² + 4xy + 3xy + 2y²
= (6x² + 4xy) + (3xy + 2y²)
= 2x(3x + 2y) + y(3x + 2y)
= (3x + 2y)(2x + y)
b) x² - y² + 10x - 6y + 16
= x² + 10x + 25 - y² - 6y - 9
= (x² + 10x + 25) - (y² + 6y + 9)
= (x + 5)² - (y + 3)²
= (x + 5 - y - 3)(x + 5 + y + 3)
= (x - y + 2)(x + y + 8)
c) 4x⁴ + y⁴
= 4x⁴ + 4x²y² + y⁴ - 4x²y²
= (2x² + y²)² - (2xy)²
= (2x² + y² - 2xy)(2x² + y² + 2xy)
Phân tích đa thức thành nhân tử:
a)6x^3y^2.(2-x)+9x^2y^2.(x-2)
b)x^2-4x+4y-y^2
c)81x^2+6yz-9y^2-z^2
a, \(6x^3y^2.\left(2-x\right)+9x^2y^2\left(x-2\right)\)
\(=6x^3y^2.\left(2-x\right)-9x^2y^2\left(2-x\right)\)
\(=y^2.\left(2-x\right)\left(6x^3-9x^2\right)\)
\(=3x^2y^2.\left(2-x\right)\left(2x-3\right)\)
b. \(x^2-4x+4y-y^2\)
\(=\left(x^2-y^2\right)-\left(4x-4y\right)\)
\(=\left(x-y\right)\left(x+y\right)-4\left(x-y\right)\)
\(=\left(x-y\right)\left(x+y-4\right)\)
phân tích đa thức thành nhân tử
1/ \(6x^2y-9xy^2+3xy\)
2/ \(\left(4-x\right)^2-16\)
3/ \(x^3+9x^2-4x-36\)
1: \(6x^2y-9xy^2+3xy\)
\(=3xy\left(2x-3y+1\right)\)
2: \(\left(4-x\right)^2-16\)
\(=\left(4-x-4\right)\left(4-x+4\right)\)
\(=-x\cdot\left(8-x\right)\)
3: \(x^3+9x^2-4x-36\)
\(=x^2\left(x+9\right)-4\left(x+9\right)\)
\(=\left(x+9\right)\left(x-2\right)\left(x+2\right)\)
1) \(6x^2y-9xy^2+3xy=3xy\left(2x-3y+1\right)\)
2) \(\left(4-x\right)^2-16=\left(4-x\right)^2-4^2=\left(4-x-4\right)\left(4-x+4\right)=-x\left(8-x\right)\)
3) \(x^3+9x^2-4x-36\\ =\left(x^3-2x^2\right)+\left(11x^2-22x\right)+\left(18x-36\right)\\ =x^2\left(x-2\right)+11x\left(x-2\right)+18\left(x-2\right)\\ =\left(x^2+11x+18\right)\left(x-2\right)\\ =\left[\left(x^2+2x\right)+\left(9x+18\right)\right]\left(x-2\right)\\ =\left[x\left(x+2\right)+9\left(x+2\right)\right]\left(x-2\right)\\ =\left(x+2\right)\left(x+9\right)\left(x-2\right)\)
Bài 1: Phân tích đa thức sau :
a)2x(xy+y^2-3)
b)(x-y)(2x+y)
c)(x-2y)^2
d)(2x-y)(y+2x)
bài 2: Phân tích các đơn thức thành nhân tử
a)3x^2-3xy
b)x^2-4y^2
c)3x-3y+xy-y^2
d)x^2-1+2y-y^2
Bài 3: Tìm x biết:
a)3x^2-6x=0
b)Tìm x,y thuộc z biết: x^2+4y^2-2xy=4
Bài 2:
a: \(3x^2-3xy=3x\left(x-y\right)\)
b: \(x^2-4y^2=\left(x-2y\right)\left(x+2y\right)\)
c: \(3x-3y+xy-y^2=\left(x-y\right)\left(3+y\right)\)
d: \(x^2-y^2+2y-1=\left(x-y+1\right)\left(x+y-1\right)\)
Phân tích đa thức thành nhân tử:
8x2-2x-1
6x2+7xy+2y2
9x2-9xy-4y2
x3+x+2
x3-2x-1
x3+3x2-4
8x2-2x-1=9x2-x2-2x-1=(3x)2-(x2+2x+1)
=(3x)2-(x+1)2=(3x-x-1)(3x+x+1)=(2x-1)(4x+1)
Phân tích các đa thức sau thành nhân tử
a, 9x^3y^2 + 3x^2y^2
b, x^2 - 2x + 1 - y^2
- Giúp mình với ạ, mai mình thi rồi-
a: \(9x^3y^2+3x^2y^2\)
\(=3x^2y^2\cdot3x+3x^2y^2\cdot1\)
\(=3x^2y^2\left(3x+1\right)\)
b: \(x^2-2x+1-y^2\)
\(=\left(x^2-2x+1\right)-y^2\)
\(=\left(x-1\right)^2-y^2\)
\(=\left(x-1-y\right)\left(x-1+y\right)\)
1:phân tích các đa thức thành nhân tử
a) 10x^2y^3+5y^2y^4
b) 4a^2b+8a^3+12a^2b^4
c) 6x(x+y)^2+3x^2y(x+y)
2: phân tích đa thức thành nhân tử
a) 9x^2-12xy+4y^2
b) 1/4x^2-1,44y^2
c) 1/27a^3+0,064b^3
3) tìm x biết
a) x^3-4x^2+4x=0 b) x^3-25x=0 c) x^4-27/125x=0
Phân tích các đa thức sau đây thành nhân tử
a, 36x^2 - ( 3x -2 ) ^2
b, 16(4x+5)^5 - 25 (2x+2)^2
c, ( x - y + 4 )^2
d, (x+1)^4 - (x-1)^4
e, 16x^2 - 24xy + 9y^2
f, -x^4/4 + 2x^2y^3 - 4y^6
g , 64x^3 +1
h, x^3y^6z^9 - 125
k, 27x^6 - 8x^3
I , x^6 - y^6
m, 27x^3 - 54x^2y + 36xy^2 - 8y^3
n, y^9 - 9x^2y^6 + 27x^4y^3 - 27x^6
làm ơn giải chi tiết giúp mik vs ạ , cảm ơn
a: =(6x)^2-(3x-2)^2
=(6x-3x+2)(6x+3x-2)
=(9x-2)(3x+2)
d: \(=\left[\left(x+1\right)^2-\left(x-1\right)^2\right]\left[\left(x+1\right)^2+\left(x-1\right)^2\right]\)
\(=4x\cdot\left[x^2+2x+1+x^2-2x+1\right]\)
=8x(x^2+1)
e: =(4x)^2-2*4x*3y+(3y)^2
=(4x-3y)^2
f: \(=-\left(\dfrac{1}{4}x^4-2\cdot\dfrac{1}{2}x^2\cdot2y^3+4y^6\right)\)
\(=-\left(\dfrac{1}{2}x^2-2y^3\right)^2\)
g: =(4x)^3+1^3
=(4x+1)(16x^2-4x+1)
k: =x^3(27x^3-8)
=x^3(3x-2)(9x^2+6x+4)
l: =(x^3-y^3)(x^3+y^3)
=(x-y)(x+y)(x^2-xy+y^2)(x^2+xy+y^2)
1) Tìm x, y, z
a) 9x2 +y2 + 2z2 – 18x +4z – 6y +20 = 0
b) 5x2 +5y2 +8xy+2y – 2x+2 = 0
c) 5x2 +2y2 + 4xy – 2x + 4y +5 = 0
d) x2 + 4y2 + z2 =2x + 12y – 4z – 14
e) x2 +y2 – 6x + 4y +2= 0
2) Phân tích đa thức thành nhân tử
a) 3xy2 – 3x3 – 6xy +3x
b) 3x2 + 11x + 6
c) –x3 – 4xy2 + 4x2y +16x
d) xz – x2 – yz +2xy – y2
e) 4x2 – y2 – 6x + 3y
f) X4 – x3 – 10x2 + 2x +4
g) (x3 – x2 + x)(121 – 25y2 – 10y) – (x3 – x2 + x) – (121 – 25y2 – 10y) +1
h) X4 – 14x3 + 71x2 – 154x + 120
Giúp mik vs cần gấp!!!
\(a,9x^2+y^2+2z^2-18x+4z-6y+20=0\\ \Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=3\\z=-1\end{matrix}\right.\)
\(b,5x^2+5y^2+8xy+2y-2x+2=0\\ \Leftrightarrow4\left(x+y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=-y\\x=1\\y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)
\(c,5x^2+2y^2+4xy-2x+4y+5=0\\ \Leftrightarrow\left(2x+y\right)^2+\left(x-1\right)^2+\left(y+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}2x=-y\\x=1\\y=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
\(d,x^2+4y^2+z^2=2x+12y-4z-14\\ \Leftrightarrow\left(x-1\right)^2+\left(2y-3\right)^2+\left(z+2\right)^2=0\\ \Leftrightarrow\left\{{}\begin{matrix}x=1\\y=\dfrac{3}{2}\\z=-2\end{matrix}\right.\)
\(e,x^2+y^2-6x+4y+2=0\\ \Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Pt vô nghiệm do ko có 2 bình phương số nguyên có tổng là 11
e: Ta có: \(x^2-6x+y^2+4y+2=0\)
\(\Leftrightarrow x^2-6x+9+y^2+4y+4-11=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+2\right)^2=11\)
Dấu '=' xảy ra khi x=3 và y=-2