Tính góc C của tam giác ABC biết
c4-2(a2+b2)c2+a4+a2b2+b4=0
Tính góc C của tam giác ABC biết c4 -2(a2+b2)c2+a4+a2b2 +b4=0
Lời giải:
PT $\Leftrightarrow (a^2+b^2)^2-2(a^2+b^2)c^2+c^4-a^2b^2=0$
$\Leftrightarrow (a^2+b^2-c^2)^2-(ab)^2=0$
$\Leftrightarrow (a^2+b^2-c^2-ab)(a^2+b^2-c^2+ab)=0$
$\Rightarrow a^2+b^2-c^2-ab=0$ hoặc $a^2+b^2-c^2+ab=0$
Áp dụng định lý cosin:
Nếu $a^2+b^2-c^2-ab=0$
$\cos C=\frac{a^2+b^2-c^2}{2ab}=\frac{a^2+b^2-c^2}{2(a^2+b^2-c^2)}=\frac{1}{2}$
$\Rightarrow \widehat{C}=60^0$
Nếu $a^2+b^2-c^2+ab=0$
$\cos C=\frac{-1}{2}\Rightarrow \widehat{C}=120^0$
cho a + b + c = 0. Chứng minh đẳng thức:
a) a4 + b4 + c4 = 2(a2b2 + b2c2 +c2a2); b) a4 + b4 + c4 = 2(ab + bc + ca)2;
a4 + b4 + c4 =(a2+b2+c2)2 /2
Tính giá trị của biểu thức :a4+b4+c4 biết rằng a+b+c=0 và:
a,a2+b2+c2=2 ; b,a2+b2+c2=1
mik cần gấp!!!
Ta có a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0a+b+c=0⇔(a+b+c)2=0⇔a2+b2+c2+2(ab+bc+ac)=0
+) Nếu a2+b2+c2=2a2+b2+c2=2 thì ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1ab+bc+ac=−22=−1⇔(ab+bc+ac)2=1⇔a2b2+b2c2+c2a2+2abc(a+b+c)=1
⇔a2b2+b2c2+c2a2=1⇔a2b2+b2c2+c2a2=1
Ta có : (a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+c2a2)=4
⇔a4+b4+c2+2=4⇔a4+b4+c4=2⇔a4+b4+c2+2=4⇔a4+b4+c4=2
+ Nếu a2+b2+c2=1a2+b2+c2=1 làm tương tự
Cho a + b + c = 0 và a2 + b2 + c2 =10. Tính a4 + b4 + c4
\(a+b+c=0\Rightarrow\left(a+b+c\right)^2=0\)
\(\Rightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)
\(\Rightarrow ab+bc+ca=-5\)
\(\Rightarrow\left(ab+bc+ca\right)^2=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2+2abc\left(a+b+c\right)=25\)
\(\Rightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2=25\)
\(\Rightarrow a^4+b^4+c^4=\left(a^2+b^2+c^2\right)^2-2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ca\right)^2\right]\)
\(=10^2-2.25=50\)
Ta có: a+b+c=0 ⇒(a+b+c)2=0
Hay a2+b2+c2+2ab+2bc+2ca=0
1+2(ac+bc+ca)=0
ab+bc+ca=\(\dfrac{-1}{2}\)
\(\left(a^2+b^2+c^2\right)^2=a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=100\left(1\right)\)
\(\left(ab+bc+ca\right)^2=a^2b^2+b^2c^2+c^2a^2+b^2ac+c^2ab+a^bc=a^2b^2+b^2c^2+c^2+a^2+2abc\left(a+b+c\right)=a^2b^2+b^2c^2+c^2a^2=25\)
hay \(2\left(a^2b^2+b^2c^2+c^2a^2\right)=50\left(2\right)\)
Từ (1) và (2) ⇒a4+b4+c4=50
Cho các số thực a,b,c thỏa mãn đồng thời a2+2=b4 , b2+2=c4, c2+2=a4
tĩnh giá trị biểu thức B=a2+b2+c2+a2b2c2-(a2b2+b2c2+c2a2)+2022
cho 3 số a,b,c thỏa mãn : a+b+c=0 ; a2+b2+c2=2009. tính A= a4+b4+c4
Ta có: a + b + c = 0
\(\Rightarrow\) (a + b + c)2 = 0
\(\Leftrightarrow\) a2 + b2 + c2 + 2ab + 2bc + 2ac = 0
\(\Leftrightarrow\) 2009 + 2(ab + bc + ac) = 0
\(\Leftrightarrow\) ab + bc + ac = \(\dfrac{-2009}{2}\)
\(\Leftrightarrow\) (ab + bc + ac)2 = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + a2c2 + 2abc(a + b + c) = \(\left(\dfrac{-2009}{2}\right)^2\)
\(\Leftrightarrow\) a2b2 + b2c2 + c2a2 = \(\left(\dfrac{-2009}{2}\right)^2\) (Vì a + b + c = 0)
Lại có: a2 + b2 + c2 = 2009
\(\Rightarrow\) (a2 + b2 + c2)2 = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 + 2.\(\dfrac{2009^2}{4}\) = 20092
\(\Leftrightarrow\) a4 + b4 + c4 = 20092 - \(\dfrac{2009^2}{2}\) = 2018040,5
Chúc bn học tốt!
cho hình vẽ biết c//d và b 1 = 85 độ c4 = 105 độ tính các góc a1,a2,a3,a4,b2,b3,b4,c1,c2,c3,d1,d2,d3,d4
\(\text{a4 +b4+c4=(a2+b2+c2)^2/2}\)
cho a+b+c=0
Từ a + b + c =0 => -a = -(b + c) => a2 = (b + c)2
<=> a2 - b2 - c2 = 2bc
<=> (a2 - b2 - c2)2 = 4b2c2
<=> a4 + b4 + c4 - 2a2b2 + 2b2c2 - 2c2a2 = 4b2c2
<=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2
<=> 2(a4 + b4 + c4) = (a2 + b2 + c2)2
<=> a4 + b4 + c4 = \(\frac{\left(a^2+b^2+c^2\right)^2}{2}\) (đpcm)
a, a( b + c)2(b - c) + b( c + a)2( c - a) + c( a + b)2( a - b)
b, a( b - c )3 + b( c - a)3 + c( a - b)3
c, a2b2( a - b) + b2c2( b - c) + c2a2( c - a)
d, a( b2 + c2) + b( c2 + a2) + c( a2 + b2) - 2abc - a3 - b3 - c3
e, a4( b - c) + b4( c - a) + c4( a - b)
1. a3 + b3 + c3 ≥ a2 . căn (bc) + b2 .căn (ac) + c2 .căn (ab)
2. (a2 + b2 + c2)(1/(a +b ) + 1/(b+c) +1/(a+c) ) ≥ (3/2)(a + b+c)
3. a4 + b4 +c4 ≥ (a + b+c)abc
1, C/m : a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Ta có : 2( a^3 + b^3 + c^3 ) = ( a^3 + b^3 + c^3 ) + ( a^3 + b^3 + c^3 )
≥ 3abc + a^3 + b^3 + c^3 ( BĐT Côsi )
= a^3 + abc + b^3 + abc + c^3 + abc ≥ 2.a^2.căn (bc) + 2.b^2.căn (ac) + 2.c^2.căn (ab) ( BĐT Côsi )
=> a^3 + b^3 + c^3 ≥ a^2.căn (bc) + b^2.căn (ac) + c^2.căn (ab)
Dấu " = " xảy ra khi a = b = c.
2, C/m : (a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (3/2)(a + b + c) ( 1 )
Áp dụng BĐT Bunhiacốpxki cho phân số ( :D ) ta được :
(a^2 + b^2 + c^2)(1/(a + b ) + 1/(b + c) +1/(a + c) ) ≥ (a^2 + b^2 + c^2).[(1+1+1)^2/(a+b+b+c+a+c)] = (a^2 + b^2 + c^2) . 9/[2.(a+b+c)]
(1) <=> (a^2 + b^2 + c^2) . 9/[2.(a+b+c)] ≥ (3/2)(a + b + c)
<=> 3(a^2 + b^2 + c^2) ≥ (a + b + c)^2
<=> a^2 + b^2 + c^2 ≥ ab + bc + ca.
BĐT cuối đúng nên => đpcm !
Dấu " = " xảy ra khi a = b = c.
3, C/m : a^4 + b^4 + c^4 ≥ (a + b + c)abc
Ta có : 2( a^4 + b^4 + c^4 ) = (a^4 + b^4 +c^4) + (a^4 + b^4 +c^4)
≥ ( a^2.b^2 + b^2.c^2 + c^2.a^2 ) + (a^4 + b^4 +c^4) = ( a^4 + b^2.c^2 ) + ( b^4 + c^2.a^2 ) + ( c^4 + a^2.b^2 )
≥ 2.a^2.bc + 2.b^2.ca + 2.c^2.ab ( BĐT Côsi )
= 2.abc(a + b + c)
Do đó a^4 + b^4 + c^4 ≥ (a + b + c)abc
Dấu " = " xảy ra khi a = b = c.