Phân tích
\(x^2+2xy-3y^2-2x+2038\)
Phân tích
\(x^2+2xy-3y^2-2x+2038\)
ko phải 2038 nha chỗ đấy là +10y - 8. mình chép sai đề
Sửa đề:\(A=x^2+2xy-3y^2-2x+10y-8\)
Nếu ko đoán được nhân tử chung để tách + ghép như bình thường thì ta làm như sau:
+) Viết đa thức lại thành đa thức biến x rồi phân tích như bình thường:v
\(A=x^2+2x\left(y-1\right)+\left(-3y^2+10y-8\right)\) (ta đã viết đa thức này giống đa thức 1 biến)
\(=x^2+2x\left(y-1\right)+\left(-3y^2+10y-8\right)\)
\(=x^2+2x\left(y-1\right)+\left(y-1\right)^2+\left(-4y^2+12y-9\right)\)
\(=\left(x+y-1\right)^2+\left(-4y^2+12y-9\right)\)
\(=\left(x+y-1\right)^2-\left(2y-3\right)^2\)
\(=\left(x+3y-4\right)\left(x-y+2\right)\)
Đúng chưa nào:)
Ấy.. mình đánh dư một dòng (2 dòng y chang nhau:v). Dư chỗ nào bạn tự sửa nhé:) Nhìn vô thấy ngay:v
tìm gtnn của x^2-2xy+2y^2+2x-10y+2038
`x^2-2xy+2y^2+2x-10+2038`
`=x^2-2xy+y^2+2(x-y)+y^2-8y+2038`
`=(x-y)^2+2(x-y)+1+y^2-8y+16+2021`
`=(x-y+1)^2+(y-4)^2+2021>=2021`
Dấu "=" `<=>` \(\begin{cases}y=4\\x=y-1=3\\\end{cases}\)
\(x^2-2xy+2y^2+2x-10y+2038=\left(x-y+1\right)^2+\left(y-4\right)^2+2021\ge2021\)
Dấu = xảy ra khi:
\(\left\{{}\begin{matrix}x-y+1=0\\y-4=0\end{matrix}\right.\)
=> x = 3 và y = 4
37. Phân tích đa thưc 2x^3y - 2xy^3 - 4xy^2 - 2xy thành nhân tử ta đc:
A. 2xy (x-y-1) (x+y-1)
B. 16x - 54y^3 = 2(2x-3y) (4x^2 + 6xy + 9y^2)
C. 16x^3 - 54y = 2(2x - 3y) (2x + 3y) ^2
D. 16x^4 (x-y) - x + y = (4x^2 -1) (4x^2 + 1) (x-y)
\(2x^3y-2xy^3-4xy^2-2xy\)
\(=2xy.\left(x^2-y^2-2y-1\right)\)
\(=2xy.[x^2-\left(y^2+2y+1\right)]\)
\(=2xy.[x^2-\left(y+1\right)^2]\)
\(=2xy.\left(x+y+1\right).\left(x-y-1\right)\)
Vậy chọn đáp án A
Các bạn ơi giải hộ mình vs mình cần gấp:
phân tích các đa thức sau thành nhân tử:
X^3-2x^2-x+2
X^2+6x-y^2+9
Phân tích đa thức 2x^3y-2xy^3-4xy^2-2xy thành nhân tử
a) x3-2x2-x+2
=x(x2-1)+2(-x2+1)
=x(x2-1)-2(x2-1)
=(x2-1)(x-2)
b)
x2+6x-y2+9
=x2+6x+9-y2
=(x+3)2-y2
=(x+3-y)(x+3+y)
Bài 1: Rút gọn biểu thức:
a,A=(x^2-1)*(x+2)*(x-2)*(x^2+2x+4)
b,B=92x+3y)*(2x-3y)*(2x-1)^2+(3y-1)^2
Bài 2:Phân tích các đẳng thức sau thành nhân tử:
a,x^2-2x+x-2
b,x^2-2xy-9+y^2
phân tích đa thức sau thành nhân tử
a\(12x^3y-24x^2y^2+12xy^3\)
b\(x^2-6x+xy-6y\)
c\(2x^2+2xy-x-y\)
d\(ax-2x-a^2+2a\)
e\(x^3-3x^2+3x-1\)
f\(3x^2-3y^2-12x-12y\)
b: \(x^2-6x+xy-6y\)
\(=x\left(x-6\right)+y\left(x-6\right)\)
\(=\left(x-6\right)\left(x+y\right)\)
c: \(2x^2+2xy-x-y\)
\(=2x\left(x+y\right)-\left(x+y\right)\)
\(=\left(x+y\right)\left(2x-1\right)\)
e: \(x^3-3x^2+3x-1=\left(x-1\right)^3\)
Phân tích thành nhân tử 2x^3y - 2xy^3 - 4xy^2 -2xy
2x3y - 2xy3 - 4xy2 -2xy
=2xy.(x2-y2-2y-1)
=2xy.[x2-(y2+2x+1)]
=2xy.[x2-(y+1)2]
=2xy.[x+(y+1)][x-(y+1)]
=2xy.(x+y+1)(x-y-1)
phân tích thành nhân tử
b. x^2+2xy+y^2-16
c. 3x^2+5x-3xy-5y
d. 4x^2-6x^3y-2x^2+8x
e. x^2-4-2xy+y^2
k. x^2-y^2-z^2-2yz
m. 6xy+5x-5y-3x^2-3y^2
b)x2+2xy+y2-16=(x+y)2-42=(x+y+4)(x+y-4)
c)3x2+5x-3xy-5y=x(3x+5)-y(3x+5)=(3x+5)(x-y)
d)4x2-6x3y-2x2+8x=2x(2x-3x2y-x+4)
e)x2-4-2xy+y2=(x2-2xy+y2)-4=(x-y)2-22=(x-y-2)(x-y+2)
k)x2-y2-z2-2yz=x2-(y+z)2=(x-y-z)(x+y+z)
m)6xy+5x-5y-3x2-3y2=3(x2-2xy+y2)+5(x-y)=3(x-y)2+5(x-y)=(x-y)(3x-3y+5)
b. (x^2+2xy+y^2)-16 =(x+y)^2-16=(x+y+4)(x+y-4)
phân tích đa thức thành nhân tử
a/ 16x^4(x-y)-x+y
b/2x^3y -2xy^3-4xy^2-2xy
c/x(y^2-z^2)+y(z^2-x^2)+z(x^2-y^2)
\(a,=\left(4x^2\right)^2\left(x-y\right)-\left(x-y\right)\)
\(=\left[\left(4x^2\right)^2-1^2\right]\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(4x^2-1\right)\left(x-y\right)\)
\(=\left(4x^2+1\right)\left(2x+1\right)\left(2x-1\right)\left(x-y\right)\)