Chứng minh rằng \(\sqrt{a+m}-\sqrt{b+m}=\frac{a-b}{\sqrt{a+m}+\sqrt{b+m}}\) (a,b,m \(\in\) R)
Chứng minh:
a)\(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
b)\(\frac{a}{\sqrt{b}}-\sqrt{a}\ge\sqrt{b}-\frac{b}{\sqrt{a}}\forall a,b>0\)
c) Với a>b>0 và m>n (m,n \(\in\)N) chứng minh:
\(\frac{a^m-b^m}{a^m+b^m}>\frac{a^n-b^n}{a^n+b^n}\)
a) Bình phương 2 vế được: \(\frac{4ab}{a+b+2\sqrt{ab}}\le\sqrt{ab}\)
<=> \(4ab\le\sqrt{ab}\left(a+b\right)+2ab\)
<=>\(\sqrt{ab}\left(a+b\right)\ge2ab\)
<=>\(a+b\ge2\sqrt{ab}\)
<=> \(\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) (luôn đúng)
Vậy \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\sqrt[4]{ab}\forall a,b>0\)
\(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\) Rút gọn và chứng minh \(A\le\frac{2}{3}\)
\(B=\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\) Rút gọn và tìm \(a\in Z\) sao cho \(A\in Z\)
\(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
Chứng minh rằng giá trị của biểu thức C không phụ thuộc vào giá trị của a, b
a)ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\x\ne1\end{matrix}\right.\)
Ta có: \(A=\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(=\frac{15\sqrt{x}-11}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}-\frac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\frac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{-5\sqrt{x}\left(\sqrt{x}-1\right)+2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
Ta có: \(A-\frac{2}{3}=\frac{-5\sqrt{x}+2}{\sqrt{x}+3}-\frac{2}{3}\)
\(=\frac{3\left(-5\sqrt{x}+2\right)}{3\left(\sqrt{x}+3\right)}-\frac{2\left(\sqrt{x}+3\right)}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-15\sqrt{x}+6-2\sqrt{x}-6}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17\sqrt{x}-51+51}{3\left(\sqrt{x}+3\right)}\)
\(=\frac{-17}{3}+\frac{17}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}+3\ge3\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}\le\frac{17}{3}\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow\frac{17}{\sqrt{x}+3}-\frac{17}{3}\le\frac{17}{3}-\frac{17}{3}=0\forall x\) thỏa mãn ĐKXĐ
\(\Rightarrow A-\frac{2}{3}\le0\forall x\) thỏa mãn ĐKXĐ
nên \(A\le\frac{2}{3}\)(đpcm)
c) Ta có: \(C=\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\left(\frac{\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b\right)}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right):\left(a-b\right)+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{a-2\sqrt{ab}+b}{a-b}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}+\frac{2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}-\sqrt{b}+2\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(=\frac{\sqrt{a}+\sqrt{b}}{\sqrt{a}+\sqrt{b}}=1\)
Vậy: Giá trị của C không phụ thuộc vào a,b(đpcm)
Cho a,b,c > 0 thỏa mãn abc = 1. Chứng minh rằng: \(\frac{\sqrt{a}}{2+b\sqrt{a}}+\frac{\sqrt{b}}{2+c\sqrt{b}}+\frac{\sqrt{c}}{2+a\sqrt{c}}\ge1\)
Lời giải:
Do $abc=1$ nên đặt:
\((\sqrt{a}, \sqrt{b}, \sqrt{c})=(\frac{x}{y}, \frac{y}{z}, \frac{z}{x})\) với $x,y,z>0$
Khi đó, bài toán trở thành: Cho $x,y,z>0$. CMR:
\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}\geq 1\)
Thật vậy, áp dụng BĐT Cauchy-Schwarz:
\(\frac{xz^2}{2z^2y+xy^2}+\frac{yx^2}{2x^2z+yz^2}+\frac{zy^2}{2y^2x+zx^2}=\frac{(xz)^2}{2xyz^2+(xy)^2}+\frac{(xy)^2}{2x^2yz+(yz)^2}+\frac{(yz)^2}{2xy^2z+(xz)^2}\)
\(\geq \frac{(xz+xy+yz)^2}{2xyz^2+(xy)^2+2x^2yz+(yz)^2+2xy^2z+(xz)^2}=\frac{(xy+yz+xz)^2}{(xy+yz+xz)^2}=1\)
Ta có đpcm.
Dấu "=" xảy ra khi $x=y=z$ hay $a=b=c=1$
Cho a, b, c là các số không âm thỏa mãn điều kiện a+b+c=2, chứng minh rằng:\(\frac{\sqrt{a}}{1+a}+\frac{\sqrt{b}}{1+a+b}+\frac{\sqrt{c}}{1+a+b+c}\le\sqrt{2}\)
Cho số thực dương a, b, c thỏa mã abc = 1.
Chứng minh rằng:
\(\frac{\sqrt{a}}{2+b\sqrt{a}}=\frac{\sqrt{b}}{2+c\sqrt{b}}=\frac{\sqrt{c}}{2+a\sqrt{c}}\)
Bài 1:
Với a, b, c là các số thực dương, chứng minh rằng: \(\frac{1}{a\sqrt{3a+2b}}+\frac{1}{b\sqrt{3b+2c}}+\frac{1}{c\sqrt{3c+2a}}\ge\frac{3}{\sqrt{5abc}}\)
Bài 2:
Với x, y là các số thực dương, tìm giá trị nhỏ nhất của \(G=\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\)
Bài 3:
Với a, b, c là các số thực dương, chứng minh rằng: \(\sqrt{\frac{a+b}{c}}+\sqrt{\frac{b+c}{a}}+\sqrt{\frac{c+a}{b}}\ge2\left(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\right)\)
Bài 4:
Với a, b, c là các số thực dương thỏa mãn abc = 1, chứng minh rằng: \(\frac{a}{\sqrt{b^2+3}}+\frac{b}{\sqrt{c^2+3}}+\frac{c}{\sqrt{a^2+3}}\ge\frac{3}{2}\)
Ai nhanh và đúng, mình sẽ đánh dấu và thêm bạn bè nhé. Thanks. Làm ơn giúp mình !!! PLEASE!!!
Bài 2:
Ta có: \(a,b>0\) nên: \(\Rightarrow ab\le\frac{\left(a+b\right)^2}{4}\)
Lại có: \(\frac{x^3+8y^3}{x^3}=\left(1+\frac{2y}{x}\right)\left(1-\frac{2y}{x}+\frac{4y^2}{x^2}\right)\) \(\le\frac{\left(2x^2+4y^2\right)^2}{4x^4}\)
\(\Rightarrow\sqrt{\frac{x^3}{x^3+8y^3}}\ge\frac{2x^2}{2x^2+4y^2}\)
Tương tự như trên ta có được: \(\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{4y^2}{2y^2+\left(x+y\right)^2}\)
Lại có: \(\left(x+y\right)^2\le2\left(x^2+y^2\right)\) nên:
\(\Rightarrow2y^2+\left(x+y\right)^2\le2x^2+4y^2\)
\(\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{4y^2}{2x^2+4y^2}\)
\(\Rightarrow\sqrt{\frac{x^3}{x^3+8y^3}}+\sqrt{\frac{4y^3}{y^3+\left(x+y\right)^3}}\ge\frac{2x^2}{2x^2+4y^2}+\frac{4y^2}{2x^2+4y^2}=1\)
\(\Rightarrow Min_P=1\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}4y^2\left(x-y\right)^2=0\\\left(x-y\right)^2\left(x^2+xy+2y^2\right)=0\end{matrix}\right.\Leftrightarrow x=y\)
`(1/(1+2))+(1/(1+2+3))+(1/(1+2+3+4))+...+(1/(1+2+3+..+99))`
\(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}-\frac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\left(a,b>0\right)\)
a) rút gọn M
b) tìm a,b để M = 2\(\sqrt{2006}\)
Cho A=\(\left(\frac{a-b}{\sqrt{a}-\sqrt{b}}+\frac{a\sqrt{a}-b\sqrt{b}}{b-a}\right)\div\frac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
a) Rút gọn A
b) Tính A khi a thỏa mãn \(\left\{{}\begin{matrix}5a-2b=9\\-a+3b=6\end{matrix}\right.\)
c) Chứng minh A\(\ge\)0\(\forall\)a;b thỏa mãn ĐKXĐ.
1.Cho biểu thức A= (\(\frac{1}{\sqrt{a}-\sqrt{a-b}}\)+\(\frac{1}{\sqrt{a}+\sqrt{a+b}}\)):(1+\(\frac{\sqrt{a+b}}{\sqrt{a-b}}\))
a/ rút gọn A
b/Tìm b biết \(|A|\)=A
2.Chứng minh giá trị biểu thức C không phụ thuộc vào x,y:
C=(\(\frac{1}{\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x+y}}}\)_\(\frac{1}{\frac{\sqrt{x+y}}{\sqrt{x}+\sqrt{y}}}\))-\(\frac{x+y}{2\sqrt{x}\sqrt{y}}\)-\(\frac{\sqrt{\left(x+y\right)^4}}{4xy}\) (x>0, y>0)
3.Cho B=(\(\sqrt{a}\)+\(\frac{c-\sqrt{ac}}{\sqrt{a}+\sqrt{c}}\)).\(\frac{1}{\frac{a}{\sqrt{ac}+c}+\frac{c}{\sqrt{ac}-a}-\frac{a+c}{\sqrt{ac}}}\)
a/ rút gọn B
b/ Với giá trị nào của a và c để B>0 và B<0
4.Cho D=(\(\sqrt{m}+\frac{2mn}{1+n^2}+\sqrt{m}-\frac{2mn}{1+n^2}\))\(\sqrt{\frac{1}{n^2}}\)
a. rút gọn D
b.tìm giá trị D với m=\(\sqrt{56+24\sqrt{5}}\)
c.tìm giá trị nhỏ nhất của D