So sánh biểu thức C = \(\sqrt{x}-1\)(Đkxđ \(x\ge0;x\ne1\)) với \(\frac{-2}{x}\)
A = \(\dfrac{3\sqrt{x}}{\sqrt{x}-6}\) với đkxđ : \(x\ge0\); x#1;x#36
B =\(\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}\) với đkxđ : \(x\ge0\); x#1;x#36
Đặt T = \(\sqrt{AB}\). Tìm giá trị nhỏ nhất của biểu thức T
\(T=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{x-6\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3\sqrt{x}}{\sqrt{x}-6}\cdot\dfrac{\sqrt{x}\left(\sqrt{x}-6\right)}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\sqrt{x}\cdot\sqrt{x}}{\sqrt{x}-1}}=\sqrt{\dfrac{3x}{\sqrt{x}-1}}\\ =\sqrt{\dfrac{3\left(x-1\right)+3}{\sqrt{x}-1}}=\sqrt{3\left(\sqrt{x}+1\right)+\dfrac{3}{\sqrt{x}-1}}\\ =\sqrt{3\left(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\right)+6}\)
Áp dụng bất đẳng thức Cosi ta có:
\(\sqrt{x}-1+\dfrac{1}{\sqrt{x}-1}\ge2\)
\(\Rightarrow T\ge\sqrt{3\cdot2+6}=2\sqrt{3}\)
Dấu = xảy ra khi x=4
Với M = \(\dfrac{\sqrt{x}}{\sqrt{x}+1}\). So sánh biểu thức M với \(\sqrt{M}\) (ĐK: \(x\ge0\))
\(M=\dfrac{\sqrt{x}+1-1}{\sqrt{x}+1}=1-\dfrac{1}{\sqrt{x}+1}< =1\)
=>M<=căn M
Cho biểu thức \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\); \(x\ge0,x\ne1\).
a) Rút gọn P.
b) Tìm x để \(P=\sqrt{x}\).
c) Với x > 1, hãy so sánh P và \(\sqrt{P}\).
a) Ta có: \(P=\left(\dfrac{\sqrt{x}}{x\sqrt{x}-1}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\dfrac{\sqrt{x}+x+\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\cdot\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
Cho biểu thức \(A=\dfrac{\sqrt{x}}{\sqrt{x}-5}-\dfrac{10\sqrt{x}}{x-25}-\dfrac{5}{\sqrt{x}+5}\)với \(x\ge0,x\ne25\)
Biểu thức A sau khi rút gọn là A = \(\dfrac{\sqrt{x}-5}{\sqrt{x}+5}\)
1) So sánh A với 2
Có \(A=\dfrac{\sqrt{x}-5}{\sqrt{x}+5}=1-\dfrac{10}{\sqrt{x}+5}\)
Dễ thấy \(\dfrac{10}{\sqrt{x}+5}>0\forall x\Rightarrow A=1-\dfrac{10}{\sqrt{x}+5}< 1\)
=> A < 2
Cho biểu thức : B = \(\left(\frac{1}{x-\sqrt{x}}+\frac{1}{\sqrt{x}-1}\right):\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)^2}\)
a) Tìm ĐKXĐ và rút gọn biểu thức B
b) So sánh B với 2
c) Tìm GTLN của A = B - \(9\sqrt{x}\)
Bài 1: Rút gọn biểu thức D = \(\sqrt{16x^4}-2x^2+1\)
Bài 2: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng điều kiện xác định”
e) E = \(\dfrac{2\sqrt{x}}{\sqrt{x}+3}\) ĐKXĐ: \(x\ge0\)
Bài 3: Tìm giá trị lớn nhất – nhỏ nhất của biểu thức sau : “ Dùng hằng đẳng thức ”
B = \(1-\sqrt{x^2-2x+2}\)
Bài 4: Cho P = \(\dfrac{4\sqrt{x}+10}{2\sqrt{x}-1}\left(x\ge0;x\ne\dfrac{1}{4}\right)\). Tính tổng các giá trị x nguyên để biểu thức P có giá trị nguyên
Bài 1:
Ta có: \(D=\sqrt{16x^4}-2x^2+1\)
\(=4x^2-2x^2+1\)
\(=2x^2+1\)
Rút gọn biểu thức :
a) \(A=\frac{x}{x-4}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\) đkxđ : \(x\ge0;x\ne4\)
b) \(B=\left(\frac{\sqrt{x}-1}{\sqrt{x}+1}-\frac{\sqrt{x}+1}{\sqrt{x}-1}\right)\left(\frac{1}{2\sqrt{x}}-\frac{\sqrt{x}}{2}\right)^2\)
c) \(C=\left(\frac{1}{\sqrt{x}}+\frac{\sqrt{x}}{\sqrt{x+1}}\right)\div\frac{\sqrt{x}}{x+\sqrt{x}}\) đkxđ : x > 0
A=\(\frac{x}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}+\frac{1}{\sqrt{x}-2}+\frac{1}{\sqrt{x}+2}\)
=\(\frac{x+\sqrt{x}+2+\sqrt{x}-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\frac{x+2\sqrt{x}}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)
=\(\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}=\frac{\sqrt{x}}{\sqrt{x-2}}\)
Vậy A=\(\frac{\sqrt{x}}{\sqrt{x}-2}\)vs x\(\ge0;x\ne4\)
C=\(\left(\frac{1+x}{\sqrt{x}\left(\sqrt{x}+1\right)}\right)\times\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{1+x}{\sqrt{x}}\)
Vậy C=\(\frac{1+x}{\sqrt{x}}\)vs x>0
Cho biểu thức : C = \(\frac{x+3\sqrt{x}+1}{\sqrt{x}}\)
a, So sánh C với 5
b, Chứng minh với mọi x thỏa mãn ĐKXĐ thì \(\frac{7}{C}\) có đúng một giá trị nguyên
ĐKXD: \(x>0\)
a/ \(C-5=\frac{x+3\sqrt{x}+1}{\sqrt{x}}-5=\frac{x-2\sqrt{x}+1}{\sqrt{x}}=\frac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)
Do \(x>0\Rightarrow\sqrt{x}>0\) ; \(\left(\sqrt{x-1}\right)^2\ge0\)
\(\Rightarrow C-5\ge0\Rightarrow C\ge5\)
b/ Từ kết quả câu a \(\Rightarrow\frac{7}{C}\le\frac{7}{5}=1,4\)
Do \(x>0\Rightarrow C>0\Rightarrow\frac{7}{C}>0\)
\(\Rightarrow0< \frac{7}{C}\le1,4\) Nên Với mọi x thoả mãn ĐKXĐ thì \(\frac{7}{C}\) có đúng 1 giá trị nguyên là 1
Tìm tất cả các giá trị nguyên của x để biểu thức : \(x-\sqrt{x}+3\in Z\) ( ĐKXĐ: \(x\ge0;x\ne4\)
Để biểu thức là số nguyên thì x là số chính phương
hay x=k2(k thuộc Z)