cho hàm số y=f(x)=3-2x2.khi đó f(-1) bằng
a.-1
b.1
c.2
d.0
câu hỏi : tìm x nguyên để đa thức f(x) chia hết cho đa thức g(x).
a,f(x) = 2x2-x+2 ; g(x) = x+1
b,f(x) = 3x2-4x+6 ; g(x) = 3x-1
c,f(x) = -2x3-7x2-5x+5 ; g(x) = x+2
d,f(x) = x3-3x2-4x+3 ; g(x) = x+1
a)\(f\left(x\right)=2x^2-x-3+5=\left(x+1\right)\left(2x-3\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(x+1\right)\left(2x-3\right)+5⋮\left(x+1\right)\)
\(\Leftrightarrow5⋮\left(x+1\right)\)
mà \(x+1\in Z\Rightarrow x+1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{-2;0;4;-6\right\}\)
Vậy...
b) \(f\left(x\right)=3x^2-4x+6=\left(3x^2-4x+1\right)+5=\left(3x-1\right)\left(x-1\right)+5\)
Để \(f\left(x\right)⋮g\left(x\right)\Leftrightarrow\left(3x-1\right)\left(x-1\right)+5⋮\left(3x-1\right)\)
\(\Leftrightarrow5⋮\left(3x-1\right)\) mà \(3x-1\in Z\Rightarrow3x-1\in U\left(5\right)=\left\{-1;1;5;-5\right\}\)
\(\Leftrightarrow x\in\left\{0;\dfrac{2}{3};2;-\dfrac{4}{3}\right\}\) mà x nguyên\(\Rightarrow x\in\left\{0;2\right\}\)
Vậy...
c)\(f\left(x\right)=\left(-2x^3-7x^2-5x+2\right)+3\)\(=\left(-2x^3-4x^2-3x^2-6x+x+2\right)+3\)\(=\left[-2x^2\left(x+2\right)-3x\left(x+2\right)+\left(x+2\right)\right]+3\)
\(=\left(x+2\right)\left(-2x^2-3x+1\right)+3\)
Làm tương tự như trên \(\Rightarrow x+2\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Leftrightarrow x\in\left\{-5;-3;-1;1\right\}\)
Vậy...
d)\(f\left(x\right)=x^3-3x^2-4x+3=x\left(x^2-3x-4\right)+3=x\left(x+1\right)\left(x-4\right)+3\)
Làm tương tự như trên \(\Rightarrow x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(\Rightarrow x\in\left\{-4;-2;0;2\right\}\)
Vậy...
Cho hàm số \(f(x) = \sqrt {4 + 3u(x)} \) với \(u(1) = 7,u'(1) = 10\). Khi đó \(f'(1)\) bằng
A. 1.
B. 6 .
C. 3 .
D. -3 .
\(f\left(x\right)=\sqrt{4+3u\left(x\right)}\)
\(\Leftrightarrow f'\left(x\right)=\dfrac{\left(4+3u\left(x\right)\right)'}{2\sqrt{4+3u\left(x\right)}}=\dfrac{3u'\left(x\right)}{2\cdot\sqrt{4+3u\left(x\right)}}\)
\(f'\left(1\right)=\dfrac{3\cdot u'\left(1\right)}{2\cdot\sqrt{4+3u\left(1\right)}}=\dfrac{3\cdot10}{2\cdot\sqrt{4+3\cdot7}}=3\)
=>Chọn C
Cho hàm số f ( x ) = - 1 3 x 3 + 2 x 2 - 3 x + 1 . Khi đó phương trình f(f(x)) = 0 có bao nhiêu nghiệm thực?
A. 9
B. 6
C. 5
D. 4
. a) Cho hàm số y = f(x) = 2x2 + 5x – 3. Tính f(1); f(0); f(1,5).
b) Cho hàm số: y = f(x) = ax - 3
Tìm a biết f(3) = 9; f(5) = 11; f(-1) = 6.
a)\(f\left(1\right)=2.1^2+5.1-3=2+5-3=4\)
\(f\left(0\right)=0+0-3=-3\)
\(f\left(1,5\right)=2.\left(1,5\right)^2-5.1,5-3=4,5-7,5-3=-6\)
b)\(f\left(3\right)=3a-3=9=>>3a=12=>a=4\)
\(f\left(5\right)=5a-3=11=>5a=14=>a=\dfrac{14}{5}\)
\(f\left(-1\right)=-a-3=6=>-a=9=>a=-9\)
a) Cho hàm số y=f(x)=2x2+5x-3. Tính f(1);f(0);f(1,5).
b) Cho hàm số;y=f(x)=ax-3
Tìm a biết: f(3)=9; f(5)=11; f(-1)=6
Giups mink với mai mink thi rồi !!!!!!!!!!!
`a)`
`@f(1)=2.1^2+5.1-3=2.1+5-3=2+5-3=4`
`@f(0)=2.0^2+5.0-3=-3`
`@f(1,5)=2.(1,5)^2+5.1,5-3=4,5+7,5-3=9`
_____________________________________________________
`b)`
`***f(3)=9`
`=>3a-3=9`
`=>3a=12=>a=4`
`***f(5)=11`
`=>5a-3=11`
`=>5a=14=>a=14/5`
`***f(-1)=6`
`=>-a-3=6`
`=>-a=9=>a=-9`
a: f(1)=2+5-3=4
f(0)=-3
f(1,5)=4,5+7,5-3=9
b: f(3)=9 nên 3a-3=9
hay a=4
f(5)=11 nên 5a-3=11
hay a=14/5
f(-1)=6 nên -a-3=6
=>-a=9
hay a=-9
Cho hàm số y = f (x) = 2x2 + 3 . Ta có :
A. f (0) = 5
B. f (1) = 7
C. f (-1) = 1
D. f (-2) = 11
Cho hàm số \(f(x) = {x^2} + {\sin ^3}x\). Khi đó \(f'\left( {\frac{\pi }{2}} \right)\) bằng
A. \(\pi \).
B. \(2\pi \).
C. \(\pi + 3\).
D. \(\pi - 3\).
\(f'\left(x\right)=2x+3sin^2\left(x\right)cos\left(x\right)\\ \Rightarrow f'\left(\dfrac{\pi}{2}\right)=\pi\)
\(\Rightarrow\) Chọn A.
Biết F(x) là một nguyên hàm của hàm số f(x) = x3 – 2x2 + 3 thỏa mãn F(1) = 3. Khi đó F(x) bằng
A. x 4 4 - 2 x 3 3 + 3 x + 5 12
B. x 4 4 - 2 x 3 3 + 3 x + 7 12
C. x 4 4 - 2 x 3 3 + 3 x + 1 12
D. 3 x 2 - 4 x + 4
Đạo hàm y 0 = −3x 2 + 6x + m − 1. Hàm số đã cho đồng biến trên khoảng (0; 3) khi và chỉ khi y 0 > 0, ∀x ∈ (0; 3). Hay −3x 2 + 6x + m − 1 > 0, ∀x ∈ (0; 3) ⇔ m > 3x 2 − 6x + 1, ∀x ∈ (0; 3) (∗). Xét hàm số f(x) = 3x 2 − 6x + 1 trên đoạn [0; 3] có f 0 (x) = 6x − 6; f 0 (x) = 0 ⇔ x = 1. Khi đó f(0) = 1, f(3) = 10, f(1) = −2, suy ra max [0;3] f(x) = f(3) = 10. Do đó (∗) ⇔ m > max [0;3] f(x) ⇔ m > 10. Vậy với m > 10 thì hàm số đã cho đồng biến trên khoảng (0; 3).