Giaỉ bất phương trình |2x+1|-|3-x|<=2x-1
Giaỉ bất phương trình sau:
a,2x-4≥0
b,-2x-3≤0
c,3x-1≤x+5
a: =>2x>=4
hay x>=2
b: =>-2x<=3
hay x>=-3/2
c: =>2x<=6
hay x<=3
Giaỉ bất phương trình sau:
a,2x-3≥7
b,-5x-1≤x+5
a: =>2x>=10
hay x>=5
b: =>-6x<=6
hay x>=-1
a. \(\Leftrightarrow2x\ge10\Leftrightarrow x\ge5\)
b.\(-5x-1\le x+5\Leftrightarrow-6\le6x\Leftrightarrow x\ge-1\)
Giaỉ các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số
a) 2x+3>1-x b) 15-2(x-3) < -2x+5
c) (x+1)(x-3) ≤ (x+4) (x-1)
GIÚP mik nha mn
a: Ta có: \(2x+3>1-x\)
\(\Leftrightarrow3x>-2\)
hay \(x>-\dfrac{2}{3}\)
b: Ta có: \(15-2\left(x-3\right)< -2x+5\)
\(\Leftrightarrow15-2x+6+2x-5< 0\)
\(\Leftrightarrow16< 0\left(vôlý\right)\)
c: Ta có: \(\left(x+1\right)\left(x-3\right)\le\left(x+4\right)\left(x-1\right)\)
\(\Leftrightarrow x^2-3x+x-3-x^2+x-4x+4\le0\)
\(\Leftrightarrow-5x\le-1\)
hay \(x\ge\dfrac{1}{5}\)
Giaỉ các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số
d)\(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\) ≥\(1-\dfrac{x}{4}\)
e) \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
GIÚP MIK NHA MN
d: Ta có: \(\dfrac{2x+1}{3}-\dfrac{1-x}{2}\ge1-\dfrac{x}{4}\)
\(\Leftrightarrow8x+4-6+6x\ge12-3x\)
\(\Leftrightarrow14x+3x\ge12+2=14\)
\(\Leftrightarrow x\ge\dfrac{14}{17}\)
e: Ta có: \(\dfrac{x+1}{2}-\dfrac{2-x}{3}< \dfrac{2x-3}{4}\)
\(\Leftrightarrow6x+12+4x-8< 6x-9\)
\(\Leftrightarrow4x< -9+8-12=-13\)
hay \(x< -\dfrac{13}{4}\)
Giaỉ phương trình sau ;
4/x^2+2x-3 = 2x-5/x+3 - 2x/x-1
Ta có: \(\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}-\dfrac{2x}{x-1}\)
\(\Leftrightarrow\dfrac{\left(2x-5\right)\left(x-1\right)-2x\left(x+3\right)}{\left(x-1\right)\left(x+3\right)}=\dfrac{4}{\left(x+3\right)\left(x-1\right)}\)
Suy ra: \(2x^2-2x-5x+5-2x^2-6x=4\)
\(\Leftrightarrow13x=-1\)
hay \(x=-\dfrac{1}{13}\)
Giaỉ các bất phương trình sau rồi biểu diễn tập nghiệm trên trục số
f) (x+1) (x-2) - (2-x) (3-x) >0
g) \(\left(2x-1\right)^2\) ≤\(2\left(x-1\right)^2\)
GIÚP mik nha mn mik đang cần gấp
f: Ta có: \(\left(x+1\right)\left(x-2\right)-\left(2-x\right)\left(3-x\right)>0\)
\(\Leftrightarrow x^2-2x+x-2-\left(x-2\right)\left(x-3\right)>0\)
\(\Leftrightarrow x^2-x-2-x^2+5x-6>0\)
\(\Leftrightarrow4x>8\)
hay x>2
g: Ta có: \(\left(2x-1\right)^2\le2\left(x-1\right)^2\)
\(\Leftrightarrow4x^2-4x+1-2x^2+4x-2\le0\)
\(\Leftrightarrow2x^2\le1\)
\(\Leftrightarrow x^2\le\dfrac{1}{2}\)
\(\Leftrightarrow-\dfrac{\sqrt{2}}{2}\le x\le\dfrac{\sqrt{2}}{2}\)
Giaỉ phương trình sau:
\(x^4+2x^3-2x^2+2x-3=0\)
Giaỉ các phương trình sau:
a, \(\dfrac{6-x}{4x-3}\)=\(\dfrac{2}{4x-3}\)
b, \(\dfrac{3-x}{2x-3}\)+x-1=\(\dfrac{-4}{2x-3}\)
c, \(\dfrac{2x-4}{x-3}\)=2x+1
a, \(\dfrac{6-x}{4x-3}=\dfrac{2}{4x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{4}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(6-x\right)\left(4x-3\right)}{4x-3}=\dfrac{2\left(4x-3\right)}{4x-3}\)
\(\Rightarrow6-x=2\)
\(\Leftrightarrow x=4\)(thỏa mãn ĐKXĐ)
b, \(\dfrac{3-x}{2x-3}+x-1=\dfrac{-4}{2x-3}\)
ĐKXĐ: \(x\ne\dfrac{3}{2}\)
PT đã cho \(\Leftrightarrow\)\(\dfrac{\left(3-x\right)\left(2x-3\right)}{2x-3}+\left(x+1\right)\left(2x-3\right)=\dfrac{-4\left(2x-3\right)}{2x-3}\)
\(\Rightarrow3-x+2x-3x+2x-3=-8x+12\)
\(\Leftrightarrow8x=12\)
\(\Leftrightarrow x=\dfrac{3}{2}\)(không thỏa mãn ĐKXĐ)
Vậy \(x\in\varnothing\).
a) ĐK: \(x\ne\dfrac{3}{4}\)
PT \(\Rightarrow27x-18-4x^2=8x-6\)
\(\Leftrightarrow4x^2-19x+12=0\) \(\Leftrightarrow\left[{}\begin{matrix}x=4\left(nhận\right)\\x=\dfrac{3}{4}\left(loại\right)\end{matrix}\right.\)
Vậy phương trình có nghiệm \(x=4\)
b) ĐK: \(x\ne\dfrac{3}{2}\)
PT \(\Rightarrow3-x+2x^2-5x+3=-4\)
\(\Leftrightarrow x^2-3x+5=0\) (Vô nghiệm)
Vậy phương trình vô nghiệm
c) ĐK: \(x\ne3\)
PT \(\Rightarrow2x^2-5x-3=2x-4\)
\(\Leftrightarrow2x^2-7x+1=0\) \(\Leftrightarrow x=\dfrac{7\pm\sqrt{41}}{4}\)
Vậy phương trình có nghiệm \(x=\dfrac{7\pm\sqrt{41}}{4}\)
Giaỉ các bất phương trình sau rồi biểu diễn trên trục số
a) x+17<10 b) 9-2x<0 c) -11-3x≥0
d) -5x≤18+x
GIÚP MIK NHA MN
a: Ta có: x+17<10
nên x<-7
b: Ta có: 9-2x<0
\(\Leftrightarrow2x>9\)
hay \(x>\dfrac{9}{2}\)
c: Ta có: \(-3x-11\ge0\)
\(\Leftrightarrow-3x\ge11\)
hay \(x\le-\dfrac{11}{3}\)