A : 6x²+7x-3>0
B : 6x² + 7x - 3 < 0
C : 3-2x-x²>0
D : 3-2x-x²<0
a, 3-x=x-5 b, 7x+21=0 c, 0,25x+1,5=0 d, 6,36-5,3x=0
e, 3x+1=7x-11 f, 15-4x=6x+5 g, 2(x+1)=3+2x
h, 3(1-x)+4x-3 = 0
a: =>-2x=-8
hay x=4
b: =>7x=-21
hay x=-3
c: =>0,25x=-1,5
hay x=-6
d: =>5,3x=6,36
hay x=6/5
e: =>-4x=-12
hay x=3
f: =>-10x=-10
hay x=1
g: =>2x+2-3-2x=0
=>-1=0(vô lý)
h: =>3-3x+4x-3=0
=>x=0
a,
\(3-x=x-5\\ \Leftrightarrow3x-x+5=0\Leftrightarrow2x+5=0\)
\(\Rightarrow x=-\dfrac{5}{2}\)
b, \(\Rightarrow x=-\dfrac{21}{7}=-3\)
c, \(\Leftrightarrow x=\left(0-1,5\right):0,25=-6\)
a. <=> 2x=8 hay x=4
b.<=> x= -21/7 = -3
c. <=> x= -1,5/ 0,25=-6
d. <=> x= -6,36/-5,3=1,2
e.<=> 4x=12 hay x= 3
f. <=> 10x = 10 hay x = 1
g. <=> 2x +2 = 3 + 2x
<=> 2=3 ( vô lí )
h.<=> 3 - 3x + 4x -3 =0
<=> x=0
Giải các phương trình sau:
1. a) 7x + 12 = 0 b) 5x – 2 = 0 c) 12 – 6x = 0 d) – 2x + 14 = 0
2. a) 3x + 1 = 7x – 11 b) 2x + x + 12 = 0 c) x – 5 = 3 – x d) 7 – 3x = 9 – x
e) 5 – 3x = 6x + 7 f) 11 – 2x = x – 1 g) 15 – 8x = 9 – 5
3. a) 0,25x + 1,5 = 0 b) 6,36 – 5,2x = 0
Bài 1:
a) Ta có: 7x+12=0
\(\Leftrightarrow7x=-12\)
hay \(x=-\frac{12}{7}\)
Vậy: \(x=-\frac{12}{7}\)
b) Ta có: 5x-2=0
\(\Leftrightarrow5x=2\)
hay \(x=\frac{2}{5}\)
Vậy: \(x=\frac{2}{5}\)
c) Ta có: 12-6x=0
\(\Leftrightarrow6x=12\)
hay x=2
Vậy: x=2
d) Ta có: -2x+14=0
⇔-2x=-14
hay x=7
Vậy: x=7
Bài 2:
a) Ta có: 3x+1=7x-11
⇔3x+1-7x+11=0
⇔-4x+12=0
⇔-4x=-12
hay x=3
Vậy: x=3
b) Ta có: 2x+x+12=0
⇔3x+12=0
⇔3x=-12
hay x=-4
Vậy: x=-4
c) Ta có: x-5=3-x
⇔x-5-3+x=0
⇔2x-8=0
⇔2x=8
hay x=4
Vậy: x=4
d) Ta có: 7-3x=9-x
⇔7-3x-9+x=0
⇔-2x-2=0
⇔-2x=2
hay x=-1
Vậy: x=-1
e) Ta có: 5-3x=6x+7
⇔5-3x-6x-7=0
⇔-9x-2=0
⇔-9x=2
hay \(x=\frac{-2}{9}\)
Vậy: \(x=\frac{-2}{9}\)
f) Ta có: 11-2x=x-1
⇔11-2x-x+1=0
⇔12-3x=0
⇔3x=12
hay x=4
Vậy: x=4
g) Ta có: 15-8x=9-5
⇔15-8x=4
⇔8x=11
hay \(x=\frac{11}{8}\)
Vậy: \(x=\frac{11}{8}\)
Bài 3:
a) Ta có: 0,25x+1,5=0
⇔0,25x=-1,5
hay x=-6
Vậy: x=-6
b) Ta có: 6,36-5,2x=0
⇔5,2x=6,36
hay \(x=\frac{159}{130}\)
Vậy: \(x=\frac{159}{130}\)
Tìm x biết
a)(x+3)^2(x-2)^2=2x b)7x(x-2)=(x-2) c)8x^3-12x^2+6x-1=0
d)4x^2-9-x(2x-3)=0 e)x^3+5x^2+9x=-45 f)x^3-6x^2-x+30=0
d) \(4x^2-9-x\left(2x-3\right)=0\)
\(\Leftrightarrow4x^2-9-2x^2+3x=0\)
\(\Leftrightarrow2x^2+3x-9=0\)
\(\Delta=3^2-4.2.\left(-9\right)=9+72=81\)
Vậy pt có 2 nghiệm phân biệt
\(x_1=\frac{-3+\sqrt{81}}{4}=\frac{-3}{2}\);\(x_1=\frac{-3-\sqrt{81}}{4}=-3\)
e) \(x^3+5x^2+9x=-45\)
\(\Leftrightarrow x^3+5x^2+9x+45=0\)
\(\Leftrightarrow x^2\left(x+5\right)+9\left(x+5\right)=0\)
\(\Leftrightarrow\left(x^2+9\right)\left(x+5\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+9=0\\x+5=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=\pm3i\\x=-5\end{cases}}\)
f) \(x^3-6x^2-x+30=0\)
\(\Leftrightarrow\left(x^3-x^2-6x\right)-\left(5x^2-5x-30\right)=0\)
\(\Leftrightarrow x\left(x^2-x-6\right)-5\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2-2x+3x-6\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left[x\left(x-2\right)+3\left(x-2\right)\right]=0\)
\(\Leftrightarrow\left(x-5\right)\left(x+3\right)\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{5;-3;2\right\}\)
Giups mình nhanh với
Chiều nay mình phải nộp rồi
a) 4(2x+7)^2= 9(x+3)^2
b)2x^3 + 7x^2 +7x+2=0
c) x^4+x^2+6x-8=0
d) (x-1)^3+(2x+3)^3= 27x^3+8
a) \(4\left(2x+7\right)^2=9\left(x+3\right)^2\)
\(\Leftrightarrow4\left(4x^2+28x+49\right)=9\left(x^2+6x+9\right)\)
\(\Leftrightarrow16x^2+112x+196=9x^2+54x+81\)
\(\Leftrightarrow7x^2+58x+115=0\)
\(\Leftrightarrow7x^2+35x+23x+115=0\)
\(\Leftrightarrow7x\left(x+5\right)+23\left(x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(7x+23\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+5=0\\7x+23=0\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=-5\\x=-\frac{23}{7}\end{cases}}\)
Vậy tập nghiệm của phương trình là \(S=\left\{-5;-\frac{23}{7}\right\}\)
b) \(2x^3+7x^2+7x+2=0\)
\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)
\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x+1\right)\left(x+2\right)=0\)
\(\Leftrightarrow\)\(x+1=0\)
hoặc \(2x+1=0\)
hoặc \(x+2=0\)
\(\Leftrightarrow\) \(x=-1\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-2\)
Vậy tập nghiệm của phương trình là \(S=\left\{-1;-\frac{1}{2};-2\right\}\)
c) \(x^4+x^2+6x-8=0\)
\(\Leftrightarrow x^4-x^3+x^3-x^2+2x^2-2x+8x-8=0\)
\(\Leftrightarrow x^3\left(x-1\right)+x^2\left(x-1\right)+2x\left(x-1\right)+8\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+x^2+2x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^3+2x^2-x^2-2x+4x+8\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+4\left(x+2\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-x+4\right)=0\)
\(\Leftrightarrow\)\(x-1=0\)
hoặc \(x+2=0\)
hoặc \(x^2-x+4=0\)
\(\Leftrightarrow\)\(x=1\)(tm)
hoặc \(x=-2\)(tm)
hoặc \(\left(x-\frac{1}{2}\right)^2+\frac{15}{4}=0\)(ktm)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2\right\}\)
d) \(\left(x-1\right)^3+\left(2x+3\right)^3=27x^3+8\)
\(\Leftrightarrow x^3-3x^2+3x-1+8x^3+36x^2+54x+27=27x^3+8\)
\(\Leftrightarrow9x^3+33x^2+57x+26=27x^3+8\)
\(\Leftrightarrow18x^3-33x^2-57x-18=0\)
\(\Leftrightarrow18x^3-54x^2+21x^2-63x+6x-18=0\)
\(\Leftrightarrow18x^2\left(x-3\right)+21x\left(x-3\right)+6\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(18x^2+21x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(18x^2+9x+12x+6\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left[9x\left(2x+1\right)+6\left(2x+1\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)\left(2x+1\right)\left(9x+6\right)=0\)
\(\Leftrightarrow\)\(x-3=0\)
hoặc \(2x+1=0\)
hoặc \(9x+6=0\)
\(\Leftrightarrow\)\(x=3\)
hoặc \(x=-\frac{1}{2}\)
hoặc \(x=-\frac{2}{3}\)
Vậy tập nghiệm của phương trình là \(S=\left\{3;-\frac{1}{2};-\frac{2}{3}\right\}\)
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x,biết
a) x(x-1) - (x+1)(x+2) = 0
b) (-2x+1)(x-1)+(x-3)(2x+1) = 0
c) -4x^2 -x +5 = 0
d) 5x^3 -2x^2-3x = 0
e) x^3+7x^2+6x = 0
f) x^3 - 5x +4 =0
a) x(x-1) - (x+1)(x+2) = 0
x\(^2\)- x -x\(^{^2}\)-2x +x+2=0
-2x+2=0
-2x=0+2
-2x=2
x=-1
Vậy x bằng -1
a) thực hiện phép tính chia 6x^3+7x^2+x+3 cho 2x+1 b) giải phương trình nghiệm nguyên 6x^3-7x^2+(1-2y)x+x-y+3=0
Tìm x, biết:
a) 3.| 9 - 2x| - 17= 16
b) 3 - 4. |5 - 6x| =7
c) |9 - 7x|= 5x - 3
d) 8x - |4x + 1| = x + 2
e)|2x - 3| - ( 2x - 3) = 0
g)| 4- x| + ( 4 - x ) =0
a). 3. |9 - 2x| - 17 = 16
3. |9 - 2x| = 16 + 17
3. |9 - 2x| = 33
|9 - 2x| = 33 : 3
|9 - 2x| = 11
=> 9 - 2x = 11
2x = 9 - 11
2x = -2
x = - 2 : 2
x = - 1
hay 9 - 2x = - 11
2x = 9 - (- 11)
2x = 9 + 11
2x = 20
x = 20 : 2
x = 10
Vậy x = -1; x = 10
a) 3.| 9 - 2x | -17 = 16
3. | 9 - 2x | = 16 + 17 = 33
| 9 - 2x | = 33 : 3 = 11
\(\Rightarrow\)9 - 2x = 11 hoặc 9 - 2x = -11
2x = 9 - 11 2x = 9 - ( - 11 )
2x = -2 2x = 20
x = -2 : 2 x = 20 : 2
x = -1 x = 10
b). 3 - 4 |5 - 6x| = 7
4 |5 - 6x| = 3 - 7
4 |5 - 6x| = - 4
|5 - 6x| = - 4 : 4
|5 - 6x| = -1
Mà |5 - 6x| luôn lớn hơn 0 với mọi x
Do đó, x không tìm được giá trị
Giải các phương trình sau:
a) (4x2 - 25)*(2x2 - 7x - 9)=0
b) (2x2 - 3)2 - 4(x - 1)2 = 0
c) x3 + 5x2 + 7x + 3 = 0
d) x3 - 6x2 + 11x - 6 = 0
a) \(\left(4x^2-25\right)\left(2x^2-7x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}4x^2-25=0\left(1\right)\\2x^2-7x-9=0\left(2\right)\end{matrix}\right.\)
\(\left(1\right)\Leftrightarrow x^2=\frac{25}{4}\Leftrightarrow x=\pm\frac{5}{2}\)
\(\left(2\right)\Leftrightarrow2x^2-9x+2x-9=0\)
\(\Leftrightarrow2x\left(x+1\right)-9\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-9\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\frac{9}{2}\end{matrix}\right.\)
Vậy....
b) \(\left(2x^2-3\right)^2-4\left(x-1\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3\right)^2-\left(2x-2\right)^2=0\)
\(\Leftrightarrow\left(2x^2-3-2x+2\right)\left(2x^2-3+2x-2\right)=0\)
\(\Leftrightarrow\left(2x^2-2x-1\right)\left(2x^2+2x-5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x^2-2x-1=0\left(3\right)\\2x^2+2x-5=0\left(4\right)\end{matrix}\right.\)
\(\left(3\right)\Delta=2^2-4\cdot2\cdot\left(-1\right)=12\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{2-\sqrt{12}}{4}=\frac{1-\sqrt{3}}{2}\\x=\frac{2+\sqrt{12}}{4}=\frac{1+\sqrt{3}}{2}\end{matrix}\right.\)
\(\left(4\right)\Delta=2^2-4\cdot2\cdot\left(-5\right)=44\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{-2-\sqrt{44}}{4}=\frac{-1-\sqrt{11}}{2}\\x=\frac{-2+\sqrt{44}}{4}=\frac{-1+\sqrt{11}}{2}\end{matrix}\right.\)
Vậy...
c) \(x^3+5x^2+7x+3=0\)
\(\Leftrightarrow x^3+3x^2+2x^2+6x+x+3=0\)
\(\Leftrightarrow x^2\left(x+3\right)+2x\left(x+3\right)+\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-1\end{matrix}\right.\)
Vậy...
d) \(x^3-6x^2+11x-6=0\)
\(\Leftrightarrow x^3-2x^2-4x^2+8x+3x-6=0\)
\(\Leftrightarrow x^2\left(x-2\right)-4x\left(x-2\right)+3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2-4x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=1\\x=3\end{matrix}\right.\)
Vậy...