Phân tích đa thức thành nhân tử :
a) 9(a-b)2-4(x-y)2
b) (a2+9)2-36a2
c) (x+y)2-2(x+y)+1
Phân tích các đa thức sau thành nhân tử:
a) x2 - 9 - x2 (x2 - 9) d) x2 + 5x + 6 h) a2 + b2 + 2a – 2b – 2ab
b) x2(x-y) + y2(y-x) e) 3x2 – 4x – 4 i) (x + 1)2 – 2(x + 1)(y – 3) + (y – 3)2
c) x3+27+(x+3)(x-9) g) x4 + 64y4 k) x2(x + 1) – 2x(x + 1) + x + 1
Mình đang cần gấp ạ
a: \(x^2-9-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)-x^2\left(x^2-9\right)\)
\(=\left(x^2-9\right)\left(1-x^2\right)\)
\(=\left(1-x\right)\left(1+x\right)\left(x-3\right)\left(x+3\right)\)
b: \(x^2\left(x-y\right)+y^2\left(y-x\right)\)
\(=x^2\left(x-y\right)-y^2\left(x-y\right)\)
\(=\left(x-y\right)\left(x^2-y^2\right)\)
\(=\left(x-y\right)\left(x-y\right)\left(x+y\right)=\left(x-y\right)^2\cdot\left(x+y\right)\)
c: \(x^3+27+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)\)
\(=\left(x+3\right)\left(x^2-3x+9+x-9\right)\)
\(=\left(x+3\right)\left(x^2-2x\right)=x\left(x-2\right)\left(x+3\right)\)
d: \(x^2+5x+6\)
\(=x^2+2x+3x+6\)
\(=x\left(x+2\right)+3\left(x+2\right)=\left(x+2\right)\left(x+3\right)\)
e: \(3x^2-4x-4\)
\(=3x^2-6x+2x-4\)
\(=3x\left(x-2\right)+2\left(x-2\right)\)
\(=\left(x-2\right)\left(3x+2\right)\)
g: \(x^4+64y^4\)
\(=x^4+16x^2y^2+64y^4-16x^2y^2\)
\(=\left(x^2+8y^2\right)^2-\left(4xy\right)^2\)
\(=\left(x^2+8y^2-4xy\right)\left(x^2+8y^2+4xy\right)\)
h: \(a^2+b^2+2a-2b-2ab\)
\(=a^2-2ab+b^2+2a-2b\)
\(=\left(a-b\right)^2+2\left(a-b\right)=\left(a-b\right)\left(a-b+2\right)\)
i: \(\left(x+1\right)^2-2\left(x+1\right)\left(y-3\right)+\left(y-3\right)^2\)
\(=\left(x+1-y+3\right)^2\)
\(=\left(x-y+4\right)^2\)
k: \(x^2\left(x+1\right)-2x\left(x+1\right)+\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2-2x+1\right)\)
\(=\left(x+1\right)\left(x-1\right)^2\)
Bài 1: Phân tích đa thức thành nhân tử
a)4(2-x)\(^2\)+xy-2y b)3a\(^2\)x-3a\(^2\)y+abx-aby
Bài 2: Phân tích đa thức thành nhân tử
a)x(x-y)\(^3\)-y(y-x)\(^2\)-y\(^2\)(x-y) b)2ax\(^3\)+6ax\(^2\)+6ax+18a
Bài 3: Phân tích đa thức thành nhân tử
a)x\(^2\)y-xy\(^2\)-3x+3y b)3ax\(^2\)+3bx\(^2\)+bx+5a+5b
Bài 4: Tính giá trị biểu thức
A=a(b+3)-b(3+b) tại a=2003 và b=1997
Bài 5: Tìm x, biết
a)8x(x-2017)-2x+4034=0 b)x\(^2\)(x-1)+16(1-x)=0
\(1,\\ a,=4\left(x-2\right)^2+y\left(x-2\right)=\left(4x-8+y\right)\left(x-2\right)\\ b,=3a^2\left(x-y\right)+ab\left(x-y\right)=a\left(3a+b\right)\left(x-y\right)\\ 2,\\ a,=\left(x-y\right)\left[x\left(x-y\right)^2-y-y^2\right]\\ =\left(x-y\right)\left(x^3-2x^2y+xy^2-y-y^2\right)\\ b,=2ax^2\left(x+3\right)+6a\left(x+3\right)\\ =2a\left(x^2+3\right)\left(x+3\right)\\ 3,\\ a,=xy\left(x-y\right)-3\left(x-y\right)=\left(xy-3\right)\left(x-y\right)\\ b,Sửa:3ax^2+3bx^2+ax+bx+5a+5b\\ =3x^2\left(a+b\right)+x\left(a+b\right)+5\left(a+b\right)\\ =\left(3x^2+x+5\right)\left(a+b\right)\\ 4,\\ A=\left(b+3\right)\left(a-b\right)\\ A=\left(1997+3\right)\left(2003-1997\right)=2000\cdot6=12000\\ 5,\\ a,\Leftrightarrow\left(x-2017\right)\left(8x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2017\\x=\dfrac{1}{4}\end{matrix}\right.\\ b,\Leftrightarrow\left(x-1\right)\left(x^2-16\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=4\\x=-4\end{matrix}\right.\)
Phân tích đa thức thành nhân tử:
1) x√y+y√x
2) 9-6√a+a
3) a+2√ab+b
4)x-y+√x+√y
5) a+2√ab+b-1
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(\sqrt{a}-3\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
1) \(x\sqrt{y}+y\sqrt{x}=\sqrt{x}\sqrt{y}\left(\sqrt{x}+\sqrt{y}\right)\)
2) \(9-6\sqrt{a}+a=\left(3-\sqrt{a}\right)^2\)
3) \(a+2\sqrt{ab}+b=\left(\sqrt{a}+\sqrt{b}\right)^2\)
4) \(x-y+\sqrt{x}+\sqrt{y}=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}+1\right)\)
5) \(a+2\sqrt{ab}+b-1=\left(\sqrt{a}+\sqrt{b}\right)^2-1^2=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
\(1,=\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)\\ 2,=\left(\sqrt{a}-3\right)^2\\ 3,=\left(\sqrt{a}+\sqrt{b}\right)^2\\ 4,=\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)+\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}+1\right)\\ 5,=\left(\sqrt{a}+\sqrt{b}\right)^2-1=\left(\sqrt{a}+\sqrt{b}-1\right)\left(\sqrt{a}+\sqrt{b}+1\right)\)
phân tích đa thức thành nhân tử
a) 9(x-y)2-4(x+y)2
`9(x-y)^2-4(x+y)^2`
`=[3(x-y)]^2-[2(x+y)]^2`
`=(3x-3y)^2-(2x+2y)^2`
`=(3x-3y+2x+2y)(3x-3y-2x-2y)`
`=(5x-y)(x-5y)`
\(9\left(x-y\right)^2-4\left(x+y\right)^2\\ =\left[3\left(x-y\right)\right]^2-\left[2\left(x+y\right)\right]^2\\ =\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\)
Ta có: \(9\left(x-y\right)^2-4\left(x+y\right)^2\)
\(=\left(3x-3y\right)^2-\left(2x+2y\right)^2\)
\(=\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\)
\(=\left(x-5y\right)\left(5x-y\right)\)
Phân tích các đa thức sau thành nhân tử: a, 5(x-y)-y(x-y) b, x^2 -6x -y^2 =9
a: =(x-y)(5-y)
b: \(=x^2-6x+9-y^2=\left(x-3-y\right)\left(x-3+y\right)\)
\(a,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\\ b,x^2-6x-y^2+9=\left(x^2-6x+9\right)-y^2=\left(x-3\right)^2-y^2=\left(x-y-3\right)\left(x+y-3\right)\)
Phân tích đa thức thành nhân tử
a.(x-y)^2-4
b.9-(x-y)^2
c.(x^2+4)^2-16x^2
a) (x-y)2-4=(x-y)2-22=(x-y-2)(x-y+2)
b) 9-(x-y)2=32-(x-y)2=(3-x+y)(3+x-y)
c) (x2+4)2-16x2=(x2+4)2-(4x)2=(x2+4-4x)(x2+4+4x)=(x-2)2(x+2)2
a) (x - y)2 - 4
= (x - y)2 - 22
= (x - y - 2)(x - y + 2)
b) 9 - (x - y)2
= 32 - (x - y)2
= (3 - x + y)(3 + x - y)
c) (x2 + 4)2 - 16x2
= (x2 + 4)2 - (4x)2
= (x2 + 4 - 4x)(x2 + 4 + 4x)
= [(x + 2)(x - 2)]2
= (x2 + 4)2
`a,`
`(x-y)^2 -4`
`= (x-y)^2 - 2^2`
`= (x-y-2)(x-y+2)`
`b,`
`9 - (x-y)^2`
`=3^2 - (x-y)^2`
`= (3-x+y) (3 +x-y)`
`c,`
`(x^2 +4)^2 -16x^2`
`= (x^2 +4)^2 - (4x)^2`
`= (x^2 +4-4x)(x^2 +4+4x)`
`= (x^2 - 2 . x . 2 +2^2) (x^2 +2 . x . 2 +2^2)`
`= (x-2)^2 (x+2)^2`
Phân tích các nhân tử sau thành đa thức
1/ a*b*(x^2+1)+x*(a^2+b^2)
2/ x^2-2*x*y+y^2-4
3/ 9-x^2-2*x*y-y^2
4/ x^2+y^2+2*x*y+y*z+z*x
1/ a*b*(x^2+1)+x*(a^2+b^2)
2/ x^2 - 2xy + y^2 - 4
= (x-y)^2 -2^2
= (x-y-2) (x-y+2)
3/ 9- x^2 - 2xy - y^2
= 9 - (x^2 + 2xy +y^2)
= 3^2 - (x+y)^2
= (3-x+y)(3+x+y)
4/ x^2 + y^2 + 2xy + yz + zx
= (x^2 + 2xy + y^2) + z(x+y)
= (x+y)^2 + z(x+y)
= (x+y+z)(x+y)
Phân tích đa thức sau thành nhân tử a) x^2 - 3x b) 10x.(x - y) - 8y.(x-y) c) x^2 - 9
a) \(x^2-3x=x\left(x-3\right)\)
b) \(10x\left(x-y\right)-8y\left(x-y\right)=2\left(x-y\right)\left(5x-4y\right)\)
c) \(x^2-9=\left(x-3\right)\left(x+3\right)\)
a: \(x^2-3x=\left(x-3\right)\cdot x\)
c: \(x^2-9=\left(x-3\right)\left(x+3\right)\)
1) phân tích đa thức thành nhân tử
a) 4x^4 - 32x^2 + 1
b) x^6 + 27
c) 3(x^4 + x^2 + 1) - (x^2 - x + 1)
d) (2x^2 -4)^2 + 9
2) phân tích đa thức thành nhân tử
a) 4x^4 + 1
b) 64x^4 + y^4
c) x^8 + x^4 + 1
Phân tích các đa thức sau thành nhân tử a,5(x-y)-y(x-y) b,x^2-6x-y^2+9 Giúp mình với ạ
`a)5(x-y)-y(x-y)`
`=(x-y)(5-y)`
`b)x^2-6x-y^2+9`
`=(x^2-6x+9)-y^2`
`=(x-3)^2-y^2`
`=(x-3-y)(x-3+y)`