Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phan Ưng Tố Như
Xem chi tiết
Ngô Hoài Thanh
13 tháng 7 2016 lúc 22:45

2) pt đề bài cho=0

<=> \(\left(x-1\right)^2\left(2x^2-x+2\right)\)=0

<=>\(\orbr{\begin{cases}x-1=0\left(1\right)\\2x^2-x+2=0\left(2\right)\end{cases}}\)

Từ 1 => x=1

từ 2 =>\(2\left(x^2-\frac{1}{2}x+1\right)\)

 =\(2\left[\left(x-\frac{1}{4}\right)^2+\frac{15}{16}\right]>0\)với mọi x

Nên pt 2 cô nghiệm

Vậy pt đề cho có nghiệm là 1

Ngô Hoài Thanh
13 tháng 7 2016 lúc 22:35

1) \(x^3-3x^2+2=\left(x-1\right)\left(2^2-x+2\right)=0\)

Ngọc Vĩ
14 tháng 7 2016 lúc 10:01

3/ x(x + 3)(x + 1)(x + 2) = 24

   => (x2 + 3x)(x2 + 3x + 2) = 24

   Đặt a = x2 + 3x ta được pt: a(a + 2) = 24 => a2 + 2a - 24 = 0 => a = 4 hoặc a = -6

Với a = 4 => x2 + 3x = 4 => x2 + 3x - 4 = 0 => x = 1 hoặc a = -4Với a = -6 => x2 + 3x = -6 => x2 + 3x + 6 = 0 , mà x2 + 3x + 6 > 0 => vô nghiệm

                                                         Vậy x = 1 , x = -4

4/ (x + 1)4 + (x + 3)4 = 2

    Đặt a = x + 2 ta được: (a - 1)4 + (a + 1)4 = 2

 \(\Rightarrow\left[\left(a-1\right)^2+\left(a+1\right)^2\right]^2-2\left(a-1\right)^2\left(a+1\right)^2=2\)

 \(\Rightarrow\left[\left(a-1+a+1\right)^2-2\left(a-1\right)\left(a+1\right)\right]^2-2\left(a^2-1\right)^2=0\)

 \(\Rightarrow\left[\left(2a\right)^2-2\left(a^2-1\right)\right]^2-2\left(a^2-1\right)^2=0\)

 \(\Rightarrow\left[4a^2-2\left(a^2-1\right)+\sqrt{2}\left(a^2-1\right)\right]\left[4a^2-2\left(a^2-1\right)-\sqrt{2}\left(a^2-1\right)\right]=0\)

\(\Rightarrow\left[\left(2+\sqrt{2}\right)a^2+2-\sqrt{2}\right]\left[\left(2-\sqrt{2}\right)a^2+2+\sqrt{2}\right]=0\)

                                          Tới đây bạn giải ra a rồi tính ra x nha

Xem chi tiết
Nguyễn Trung Hiếu
Xem chi tiết
Trần Nguyễn Quy
12 tháng 1 2017 lúc 17:16

làm tạm câu này vậy

a/\(\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)^2=5x^4\)

\(\Leftrightarrow\left(x^2-x+1\right)^4+4x^2\left(x^2-x+1\right)+4x^4=9x^4\)

\(\Leftrightarrow\left\{\left(x^2-x+1\right)^2+2x^2\right\}=\left(3x^2\right)^2\)

\(\Leftrightarrow\left(x^2-x+1\right)^2+2x^2=3x^2\)(vì 2 vế đều không âm)

\(\Leftrightarrow\left(x^2-x+1\right)=x^2\)

\(\Leftrightarrow\left|x\right|=x^2-x+1\)\(\left(x^2-x+1=\left(x-\frac{1}{4}\right)^2+\frac{3}{4}>0\right)\)

\(\Leftrightarrow\orbr{\begin{cases}x=x^2-x+1\\-x=x^2-x+1\end{cases}\Leftrightarrow\orbr{\begin{cases}\left(x-1\right)^2=0\\x^2+1=0\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=1\\x^2+1=0\left(vo.nghiem\right)\end{cases}}}\)

Vậy...

Trang Nguyễn
12 tháng 1 2017 lúc 17:20

chuẩn

Trần Nguyễn Quy
13 tháng 1 2017 lúc 22:38

i cum back <(") câu e/ bạn xét x=0 không là nghiệm của pt, sau đó chia 2 vế cho \(x^2\), đặt ẩn phụ \(t=x+\frac{1}{x}\)rồi giải 

tl:)
Xem chi tiết
Thanh Hoàng Thanh
14 tháng 1 2022 lúc 20:23

\(1.\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}.\Leftrightarrow\dfrac{x-1-3x}{3}=\dfrac{x-2}{2}.\Leftrightarrow\dfrac{-2x-1}{3}-\dfrac{x-2}{2}=0.\)

\(\Leftrightarrow\dfrac{-4x-2-3x+6}{6}=0.\Rightarrow-7x+4=0.\Leftrightarrow x=\dfrac{4}{7}.\)

\(2.\left(x-2\right)\left(2x-1\right)=x^2-2x.\Leftrightarrow\left(x-2\right)\left(2x-1\right)-x\left(x-2\right)=0.\)

\(\Leftrightarrow\left(x-2\right)\left(2x-1-x\right)=0.\Leftrightarrow\left(x-2\right)\left(x-1\right)=0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2.\\x=1.\end{matrix}\right.\)

\(3.3x^2-4x+1=0.\Leftrightarrow\left(x-1\right)\left(x-\dfrac{1}{3}\right)=0.\Leftrightarrow\left[{}\begin{matrix}x=1.\\x=\dfrac{1}{3}.\end{matrix}\right.\)

\(4.\left|2x-4\right|=0.\Leftrightarrow2x-4=0.\Leftrightarrow x=2.\)

\(5.\left|3x+2\right|=4.\Leftrightarrow\left[{}\begin{matrix}3x+2=4.\\3x+2=-4.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}.\\x=-2.\end{matrix}\right.\)

ILoveMath
14 tháng 1 2022 lúc 20:26

\(1,\dfrac{x-1}{3}-x=\dfrac{2x-4}{4}\\ \Leftrightarrow\dfrac{x-1}{3}-x=\dfrac{x-2}{2}\\ \Leftrightarrow\dfrac{2\left(x-1\right)-6x}{6}=\dfrac{3\left(x-2\right)}{6}\\ \Leftrightarrow2\left(x-1\right)-6x=3\left(x-2\right)\\ \Leftrightarrow2x-2-6x=3x-6\\ \Leftrightarrow-4x-2=3x-6\)

\(\Leftrightarrow3x-6+4x+2=0\\ \Leftrightarrow7x-4=0\\ \Leftrightarrow x=\dfrac{4}{7}\)

\(2,\left(x-2\right)\left(2x-1\right)=x^2-2x\\ \Leftrightarrow2x^2-4x-x+2=x^2-2x\\ \Leftrightarrow x^2-3x+2=0\\ \Leftrightarrow\left(x^2-2x\right)-\left(x-2\right)=0\\ \Leftrightarrow x\left(x-2\right)-\left(x-2\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

\(3,3x^2-4x+1=0\\ \Leftrightarrow\left(3x^2-3x\right)-\left(x-1\right)=0\\ \Leftrightarrow3x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{3}\end{matrix}\right.\)

\(4,\left|2x-4\right|=0\\ \Leftrightarrow2x-4=0\\ \Leftrightarrow2x=4\\ \Leftrightarrow x=2\)

\(5,\left|3x+2\right|=4\\ \Leftrightarrow\left[{}\begin{matrix}3x+2=4\\3x+2=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=2\\3x=-6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{2}{3}\\x=-2\end{matrix}\right.\)

\(6,\left|2x-5\right|=\left|-x+2\right|\\ \Leftrightarrow\left[{}\begin{matrix}2x-5=-x+2\\2x-5=x-2\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}3x=7\\x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{3}\\x=3\end{matrix}\right.\)

Cao Thành Lộc
Xem chi tiết
Chén Tiêu
Xem chi tiết
tghjkjjhttrđfdđ
Xem chi tiết
Trí Tiên亗
8 tháng 2 2020 lúc 15:21

\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )

Vậy : ...

Khách vãng lai đã xóa
Minh Nguyen
8 tháng 2 2020 lúc 15:32

1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-32x+12=0\)

\(\Leftrightarrow5x^2-30x-2x+12=0\)

\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)

2/ \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x+1=0\)

hoặc   \(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc   \(x=-1\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)

Khách vãng lai đã xóa
Minh Nguyen
8 tháng 2 2020 lúc 15:43

3/ \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)-72=0\)

Đặt \(t=x^2-4\), ta có :

\(t\left(t-6\right)-72=0\)

\(\Leftrightarrow t^2-6t-72=0\)

\(\Leftrightarrow t^2-12t+6t-72=0\)

\(\Leftrightarrow t\left(t-12\right)+6\left(t-12\right)=0\)

\(\Leftrightarrow\left(t+6\right)\left(t-12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}t+6=0\\t-12=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2+2=0\left(ktm\right)\\x^2-16=0\left(tm\right)\end{cases}}\)

\(\Leftrightarrow x^2=16\)

\(\Leftrightarrow x=\pm4\)

Vậy tập nghiệm của phương trình là : \(S=\left\{4;-4\right\}\)

4/ \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\)

\(\Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+4x+x+2\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\)\(x+1=0\)

hoặc   \(x+2=0\)

hoặc  \(2x+1=0\)

\(\Leftrightarrow\)\(x=-1\)

hoặc  \(x=-2\)

hoặc  \(x=-\frac{1}{2}\)

Vậy tập nghiệm của phương trình là \(S=\left\{-1;-2;\frac{1}{2}\right\}\)

Khách vãng lai đã xóa
Ánh Dương
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 8 2020 lúc 14:44

a. Chắc là nhầm đề, pt bậc 3 này... ko giải được (trong chương trình phổ thông VN)

b.

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow x^2+\frac{9}{x^2}-\left(x+\frac{3}{x}\right)+18=0\)

Đặt \(x+\frac{3}{x}=t\Rightarrow x^2+\frac{9}{x^2}=t^2-6\)

Pt trở thành: \(t^2-6-t+18=0\Leftrightarrow t^2-t+12=0\) (vô nghiệm)

c.

\(\left(x^2-2x+1-\left(x-2\right)\right)^2-3x^2+8x-6=0\)

\(\Leftrightarrow\left(x^2-2x+1\right)^2-2\left(x-2\right)\left(x^2-2x+1\right)+\left(x-2\right)^2-3x^2+8x-6=0\)

\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2\left(x-2\right)-2x^2+4x-2=0\)

\(\Leftrightarrow\left(x-1\right)^4-2\left(x-1\right)^2\left(x-2\right)-2\left(x-1\right)^2=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-2x+1-2x+4-2\right)=0\)

\(\Leftrightarrow\left(x-1\right)^2\left(x^2-4x+3\right)=0\)

\(\Leftrightarrow\left(x-1\right)^3\left(x-3\right)=0\)

Nguyễn Việt Lâm
24 tháng 8 2020 lúc 14:48

d.

Câu này chắc cũng nhầm đề, pt này ko giải được

e.

\(\Leftrightarrow\left(x-3\right)\left(x+2\right)\left(x-1\right)\left(x+6\right)-40x^2=0\)

\(\Leftrightarrow\left(x^2-x-6\right)\left(x^2+5x-6\right)-40x^2=0\)

Nhận thấy \(x=0\) ko phải nghiệm, chia 2 vế cho \(x^2\)

\(\Leftrightarrow\left(x-\frac{6}{x}-1\right)\left(x-\frac{6}{x}+5\right)-40=0\)

Đặt \(x-\frac{6}{x}-1=t\)

\(\Rightarrow t\left(t+6\right)-40=0\Leftrightarrow t^2+6t-40=0\) \(\Rightarrow\left[{}\begin{matrix}t=4\\t=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{6}{x}-1=4\\x-\frac{6}{x}-1=-10\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-5x-6=0\\x^2+9x-6=0\end{matrix}\right.\) (bấm máy)

Nguyễn Việt Lâm
22 tháng 9 2020 lúc 13:47

\(x^4-4x^3-2x^2-16x-24=0\)

Giả sử đa thức được tách về dạng:

\(\left(x^2+ax+b\right)\left(x^2+cx+d\right)\)

Nhân phá ra ta được:

\(x^4+\left(a+c\right)x^3+\left(b+d+ac\right)x^2+\left(ad+bc\right)x+bd\)

Đồng nhất hệ số với vế trái: \(\Rightarrow\left\{{}\begin{matrix}a+c=-4\\b+d+ac=-2\\ad+bc=-16\\bd=-24\end{matrix}\right.\)

Giải hệ pt này rất tốn thời gian, nên ta sẽ xử lý tiếp bằng cách dự đoán

\(bd=-24\) nên có thể \(\left(b;d\right)=\left(2;-12\right);\left(-2;12\right);\left(4;-6\right);\left(-4;6\right);\left(1;-24\right);\left(-1;24\right)\)

Thay vào 2 pt đầu và sử dụng Viet đảo kiểm tra thấy chỉ có cặp \(\left(4;-6\right)\) thỏa mãn, khi đó (a;c)=(0;-4)

Vậy \(x^4-4x^3-2x^2-16x-24=0\)

\(\Leftrightarrow\left(x^2+4\right)\left(x^2-4x-6\right)=0\)
Tới đây ez

Cách 2: sử dụng casio

Chọn MODE-7 chế độ Table, nhập hàm \(F\left(X\right)=X^4-4X^3-2X^2-16X-24=0\)

Sau đó "=", START chọn -10 rồi "=", end chọn 10 rồi "=", step chọn 1 rồi "="

Sử dụng nút di chuyển "replay" lên xuống kiểm tra cột F(X), tìm vị trí nào F(X) đổi dấu thì nhìn sang cột X bên trái

Ví dụ ở đây ta thấy F(X) đối dấu lần 1 từ 48 sang -5 tương ứng X khoảng giữa -2 và -1, như vậy pt có 1 nghiệm X nằm giữa -2 và -1

Tiếp tục kiểm tra, lại thấy 1 nghiệm X giữa 5 và 6

Vậy là đủ, bấm MODE-1 thoát ra, nhập tiếp \(X^4-4X^3-2X^2-16X-24\) ngoài màn hình MODE-1 rồi "="

Sau đó shift+SOLVE

Máy hỏi Solve for X thì ta chọn 1 số bất kì giữa -2 và -1, ví dụ -1.5 rồi "="

Nó sẽ cho 1 nghiệm rất xấu, ko vấn đề, bấm shift+RCL (phím nằm trên số 7) rồi phím "-" (chữ A đỏ) để máy gán nghiệm vào biến A

Bấm AC, rồi bấm nút replay đi lên đến khi xuất hiện pt nhập ban đâu, tiếp tục shift+SOLVE, lần này SOLVE forX ta chọn 1 số nằm giữa 4 và 5 (ví dụ 4.5)

Được 1 nghiệm nữa, lại shift-RCL- rồi nút B đỏ (nằm kế nút A đỏ) để máy gán nghiệm vào biến B

Nhấn AC, rồi nhập alpha A+alpha B rồi "="

Violympic toán 9

Nó ra 4

Tiếp tục nhập \(A\times B\) rồi "="

Nó ra -6

Vậy theo Viet đảo, A và B là nghiệm của: \(x^2-4x-6\)

Vậy thì \(x^4-4x^3-2x^2-16x-24\) có 1 nhân tử là \(x^2-4x-6\)

Tiến hành chia đa thức \(x^4-4x^3-2x^2-16x-24\) cho \(x^2-4x-6\) ta được \(x^2+4\)

Vậy \(x^4-4x^3-2x^2-16x-24=\left(x^2+4\right)\left(x^2-4x-6\right)\)

bài toán coi như xong

Khách vãng lai đã xóa
Thỏ Nghịch Ngợm
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 4 2021 lúc 19:35

Với \(x=0\) không phải nghiệm

Với \(x\ne0\) chia 2 vế cho \(x^2\), pt tương đương:

\(2x^2+3x-1+\dfrac{3}{x}+\dfrac{2}{x^2}=0\)

\(\Leftrightarrow2\left(x+\dfrac{1}{x}\right)^2+3\left(x+\dfrac{1}{x}\right)-5=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{x}=1\\x+\dfrac{1}{x}=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x^2-x+1=0\\2x^2+5x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(vô-nghiệm\right)\\\left(x+2\right)\left(2x+1\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=-\dfrac{1}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
5 tháng 4 2021 lúc 19:41

Câu a chắc là đề sai, vì nghiệm vô cùng xấu, tử số của phân thức cuối cùng là \(x+17\) mới hợp lý

b.

Đặt \(x+3=t\) 

\(\Rightarrow\left(t+1\right)^4+\left(t-1\right)^4=14\)

\(\Leftrightarrow t^4+6t^2-6=0\) (đến đây đoán rằng bạn tiếp tục ghi sai đề, nhưng thôi cứ giải tiếp)

\(\Rightarrow\left[{}\begin{matrix}t^2=-3+\sqrt{15}\\t^2=-3-\sqrt{15}\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow t=\pm\sqrt{-3+\sqrt{15}}\Rightarrow x=-3\pm\sqrt{-3+\sqrt{15}}\)

Câu c chắc cũng sai đề, vì lên lớp 8 rồi không ai cho đề kiểu này cả, người ta sẽ rút gọn luôn số 1 bên trái và 60 bên phải.

Nguyễn Lê Phước Thịnh
5 tháng 4 2021 lúc 20:03

c)Ta có: \(\left(x-3\right)\left(x-2\right)\left(x+1\right)=60\)

\(\Leftrightarrow\left(x^2-5x+6\right)\left(x+1\right)=60\)

\(\Leftrightarrow x^3+x^2-5x^2-5x+6x+6-60=0\)

\(\Leftrightarrow x^3-4x^2+x-54=0\)

Bạn xem lại đề, nghiệm rất xấu