Giải phương trình:
1. \(x^3-3x^2-9x+12=0\)
2. \(x^4-x^3+18x^2-3x+9=0\)
3. \(\left(x^2-3x+3\right)^2-3x^2+8x-6=0\)
4. \(\left(2x^2-5x+1\right)^2-10x^2+24x-4=0\)
5. \(\left(x-3\right)\left(x-1\right)\left(x+2\right)\left(x+6\right)-40x^2=0\)
Giải các pt sau:
a) \(\sqrt{x+8}+\frac{9x}{\sqrt{x+8}}-6\sqrt{x}=0\)
b) \(x^4-2x^3+\sqrt{2x^3+x^2+2}-2=0\)
c) \(3x\sqrt[3]{x+7}\left(x+\sqrt[3]{x+7}\right)=7x^3+12x^2+5x-6\)
d) \(4x^2+\left(8x-4\right)\sqrt{x}-1=3x+2\sqrt{2x^2+5x-3}\)
e) \(16x^2+19x+7+4\sqrt{-3x^2+5x+2}=\left(8x+2\right)\left(\sqrt{2-x}+2\sqrt{3x+1}\right)\)
f) \(\left(5x+8\right)\sqrt{2x-1}+7x\sqrt{x+3}=9x+8-\left(x+26\right)\sqrt{x-1}\)
g) \(\sqrt[3]{3x+1}+\sqrt[3]{5-x}+\sqrt[3]{2x-9}-\sqrt[3]{4x-3}=0\)
Giải phương trình:
1, \(\left(x+3\right)\left(3x^4+8x^2+12x+21\right)=5\left(x^2+1\right)^3\)
2, \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5x^2=0\)
3, \(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)
4, \(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2.\dfrac{x^2+36}{x^2-36}\)
Giải các phương trình sau:
a) \(2x^4-x^3-6x^2-x+2=0\)
b) \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)=24\)
c) \(x^4-4x^3+3x^2+2x-6=0\)
Giải PT
\(\left(x-1\right)\left(x-3\right)\left(x+5\right)\left(x+7\right)=297\)
\(x^4-8x^2+x+12=0\)
\(x^4+5x^3-10x^2+10x+4=0\)
\(\left(6x^2-5x+1\right)\left(x^2-5x+6\right)=4x^2\)
Giải các phương trình sau:
1. \(x^4-4x^3-6x^2-4x+1=0\)
2. \(x^4-4x^2+12x-9=0\)
3. \(x^4-4x=1\)
4. \(\left(x+2\right)\left(x+3\right)\left(x+8\right)\left(x+12\right)=4x^2\)
5. \(x^4+4x^3+3x^2+2x-1=0\)
Giải phương trình:
1, \(\left(x^2+x+1\right)\left(x^4+2x^3+7x^2+26x+37\right)=5\left(x+3\right)^3\)
2, \(\left(x+1\right)^3+\left(x+3\right)^3+6\left(x+1\right)\left(x+7\right)\left(x+3\right)=8\left(x+2\right)^3\)
3, \(x^3+\left(x-1\right)^3+3x\left(x-1\right)\left(x^4+x\right)=\left(2x-1\right)^3\)
4, \(\dfrac{\left(x+1\right)^3}{3x+1}+\dfrac{x^3+5x+2}{x^3+2x+1}=x+3\)
5, \(\dfrac{5x^3+x^2+x+1}{4x^2+1}+\dfrac{6\left(4x^2+1\right)}{x^3+x^2+1}=x+7\)
6, \(\left(x^2-4x+1\right)^3+\left(8x-x^2+4\right)^3+\left(x-5\right)^3=125x^3\)
Giải hệ phương trình:
1, \(\left\{{}\begin{matrix}\left(17-3x\right)\sqrt{5-x}+\left(3y-14\right)\sqrt{4-y}=0\\2\sqrt{2x+y+5}+3\sqrt{3x+2y+11}=x^2+6x+13\end{matrix}\right.\)
2, \(\left\{{}\begin{matrix}x\left(x+y\right)+\sqrt{x+y}=\sqrt{2y}\left(\sqrt{2y^3}+1\right)\\x^2y-5x^2+7\left(x+y\right)-4=6\sqrt[3]{xy-x+1}\end{matrix}\right.\)
3, \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt[4]{32-x}-y^2+3=0\\\sqrt[4]{x}+\sqrt{32-x}+6y-24=0\end{matrix}\right.\)
Giải hệ phương trình:
1. \(\left\{{}\begin{matrix}x+3=2\sqrt{\left(3y-x\right)\left(y+1\right)}\\\sqrt{3y-2}-\sqrt{\dfrac{x+5}{2}}=xy-2y-2\end{matrix}\right.\)
2. \(\left\{{}\begin{matrix}\sqrt{2y^2-7y+10-x\left(y+3\right)}+\sqrt{y+1}=x+1\\\sqrt{y+1}+\dfrac{3}{x+1}=x+2y\end{matrix}\right.\)
3. \(\left\{{}\begin{matrix}\sqrt{4x-y}-\sqrt{3y-4x}=1\\2\sqrt{3y-4x}+y\left(5x-y\right)=x\left(4x+y\right)-1\end{matrix}\right.\)
4. \(\left\{{}\begin{matrix}9\sqrt{\dfrac{41}{2}\left(x^2+\dfrac{1}{2x+y}\right)}=3+40x\\x^2+5xy+6y=4y^2+9x+9\end{matrix}\right.\)
5. \(\left\{{}\begin{matrix}\sqrt{xy+\left(x-y\right)\left(\sqrt{xy}-2\right)}+\sqrt{x}=y+\sqrt{y}\\\left(x+1\right)\left[y+\sqrt{xy}+x\left(1-x\right)\right]=4\end{matrix}\right.\)
6. \(\left\{{}\begin{matrix}x^4-x^3+3x^2-4y-1=0\\\sqrt{\dfrac{x^2+4y^2}{2}}+\sqrt{\dfrac{x^2+2xy+4y^2}{3}}=x+2y\end{matrix}\right.\)
7. \(\left\{{}\begin{matrix}x^3-12z^2+48z-64=0\\y^3-12x^2+48x-64=0\\z^3-12y^2+48y-64=0\end{matrix}\right.\)