Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thu Trà

Giải phương trình:

1, \(\left(x+3\right)\left(3x^4+8x^2+12x+21\right)=5\left(x^2+1\right)^3\)

2, \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5x^2=0\)

3, \(\dfrac{x^2+x+1}{x+1}+\dfrac{x^2+2x+2}{x+2}-\dfrac{x^2+3x+3}{x+3}-\dfrac{x^2+4x+4}{x+4}=0\)

4, \(\left(\dfrac{x+6}{x-6}\right)\left(\dfrac{x+4}{x-4}\right)^2+\left(\dfrac{x-6}{x+6}\right)\left(\dfrac{x+9}{x-9}\right)^2=2.\dfrac{x^2+36}{x^2-36}\)

Nguyễn Việt Lâm
1 tháng 3 2019 lúc 22:37

a/ \(\left(x+3\right)\left(3\left(x^2+1\right)^2+2\left(x+3\right)^2\right)=5\left(x^2+1\right)^3\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2+2\left(x+3\right)^3-5\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x+3\right)\left(x^2+1\right)^2-3\left(x^2+1\right)^3+2\left(x+3\right)^3-2\left(x^2+1\right)^3=0\)

\(\Leftrightarrow3\left(x^2+1\right)^2\left(-x^2+x+2\right)+2\left(-x^2+x+2\right)\left(\left(x+3\right)^2+\left(x+3\right)\left(x^2+1\right)+\left(x^2+1\right)^2\right)=0\)

\(\Leftrightarrow\left(-x^2+x+2\right)\left[3\left(x^2+1\right)^2+2\left(x+3+\dfrac{x^2+1}{2}\right)^2+\dfrac{3\left(x^2+1\right)^2}{4}\right]=0\)

\(\Leftrightarrow-x^2+x+2=0\) (phần ngoặc phía sau luôn dương)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=-1\end{matrix}\right.\)

Nguyễn Việt Lâm
1 tháng 3 2019 lúc 22:47

b/ \(3\left(x^2+2x-1\right)^2-2\left(x^2+3x-1\right)^2+5\left(x^2+3x-1-\left(x^2+2x-1\right)\right)^2=0\)

Đặt \(\left\{{}\begin{matrix}a=x^2+2x-1\\b=x^2+3x-1\end{matrix}\right.\)

\(3a^2-2b^2+5\left(b-a\right)^2=0\Leftrightarrow8a^2+3b^2-10ab=0\)

\(\Leftrightarrow\left(4a-3b\right)\left(2a-b\right)=0\Leftrightarrow\left[{}\begin{matrix}4a=3b\\2a=b\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}4\left(x^2+2x-1\right)=3\left(x^2+3x-1\right)\\2\left(x^2+2x-1\right)=x^2+3x-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x^2-x-1=0\\x^2+x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1+\sqrt{5}}{2}\\x=\dfrac{1-\sqrt{5}}{2}\\x=\dfrac{-1+\sqrt{5}}{2}\\x=\dfrac{-1-\sqrt{5}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
1 tháng 3 2019 lúc 22:57

c/ ĐKXĐ: \(x\ne-1;-2;-3;-4\)

\(\dfrac{x^2+x+1}{x+1}-1+\dfrac{x^2+2x+2}{x+2}-1+1-\dfrac{x^2+3x+3}{x+3}+1-\dfrac{x^2+4x+4}{x+4}=0\)

\(\Leftrightarrow\dfrac{x^2}{x+1}+\dfrac{x^2+x}{x+2}-\dfrac{x^2+2x}{x+3}-\dfrac{x^2+3x}{x+4}=0\)

\(\Leftrightarrow x\left(\dfrac{x}{x+1}+\dfrac{x+1}{x+2}-\dfrac{x+2}{x+3}-\dfrac{x+3}{x+4}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{-1}{x+1}-\dfrac{1}{x+2}+\dfrac{1}{x+3}+\dfrac{1}{x+4}\right)=0\)

\(\Leftrightarrow x\left(\dfrac{-2}{\left(x+1\right)\left(x+3\right)}-\dfrac{2}{\left(x+4\right)\left(x+2\right)}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)\left(x+3\right)+\left(x+2\right)\left(x+4\right)=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+10x+11=0\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-5-\sqrt{3}}{2}\\x=\dfrac{-5+\sqrt{3}}{2}\end{matrix}\right.\)

Nguyễn Việt Lâm
2 tháng 3 2019 lúc 3:48

ĐK: \(x\ne4;9;\pm6\Rightarrow\dfrac{x+6}{x-6}\ne0\)

Nhân 2 vế với \(\dfrac{x+6}{x-6}\):

\(\left(\dfrac{\left(x+6\right)\left(x+4\right)}{\left(x-6\right)\left(x-4\right)}\right)^2+\left(\dfrac{x+9}{x-9}\right)^2=\dfrac{2\left(x^2+36\right)}{\left(x-6\right)^2}=2+\dfrac{24x}{\left(x-6\right)^2}\)

\(\Leftrightarrow\left(\dfrac{x^2+10x+24}{x^2-10x+24}\right)^2-1+\left(\dfrac{x+9}{x-9}\right)^2-1-\dfrac{24x}{\left(x-6\right)^2}=0\)

\(\Leftrightarrow\dfrac{40x\left(x^2+24\right)}{\left(x-6\right)^2\left(x-4\right)^2}+\dfrac{36x}{\left(x-9\right)^2}-\dfrac{24x}{\left(x-6\right)^2}=0\)

\(\Leftrightarrow4x\left(\dfrac{10x^2+240}{\left(x-6\right)^2\left(x-4\right)^2}+\dfrac{9}{\left(x-9\right)^2}-\dfrac{6}{\left(x-6\right)^2}\right)=0\)

\(\Leftrightarrow4x\left(\dfrac{2}{\left(x-6\right)^2}\left(\dfrac{5x^2+120}{\left(x-4\right)^2}-3\right)+\dfrac{9}{\left(x-9\right)^2}\right)=0\)

\(\Leftrightarrow4x\left(\dfrac{2}{\left(x-6\right)^2}\left(\dfrac{2x^2+24x+72}{\left(x-4\right)^2}\right)+\dfrac{9}{\left(x-9\right)^2}\right)=0\)

\(\Leftrightarrow4x\left(\dfrac{4\left(x+6\right)^2}{\left(x-6\right)^2\left(x-4\right)^2}+\dfrac{9}{\left(x-9\right)^2}\right)=0\)

\(\Leftrightarrow x=0\) (do \(\dfrac{4\left(x+6\right)^2}{\left(x-6\right)^2\left(x-4\right)^2}+\dfrac{9}{\left(x-9\right)^2}>0\))

Vậy pt có nghiệm duy nhất \(x=0\)


Các câu hỏi tương tự
Nguyễn Thu Trà
Xem chi tiết
Kim Trí Ngân
Xem chi tiết
Trần Thu Trang
Xem chi tiết
Hương Phạm
Xem chi tiết
Trúc Nguyễn
Xem chi tiết
Thánh cao su
Xem chi tiết
Big City Boy
Xem chi tiết
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Kim Trí Ngân
Xem chi tiết