tính giá tị lớn nhất , nhỏ nhất của biểu thức
a) 1-4x-2x2
b) x2-4x+y2+2y-5
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= x2-10x+3
b, N= x2-x+2
c, P=3x2-12x
Bài 2: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
MONG MN GIÚP ĐỠ :3
Bài 1:
a: \(M=x^2-10x+3\)
\(=x^2-10x+25-22\)
\(=\left(x^2-10x+25\right)-22\)
\(=\left(x-5\right)^2-22>=-22\forall x\)
Dấu '=' xảy ra khi x-5=0
=>x=5
b: \(N=x^2-x+2\)
\(=x^2-x+\dfrac{1}{4}+\dfrac{7}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>=\dfrac{7}{4}\forall x\)
Dấu '=' xảy ra khi x-1/2=0
=>x=1/2
c: \(P=3x^2-12x\)
\(=3\left(x^2-4x\right)\)
\(=3\left(x^2-4x+4-4\right)\)
\(=3\left(x-2\right)^2-12>=-12\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
Bài 1: Tìm giá trị nhỏ nhất của biểu thức
a, M= 2x2-4x+3
b, N= x2-4x+5+y2+2y2
GIÚP MIK VỚI MN ƠI :>
a: \(M=2x^2-4x+3\)
\(=2x^2-4x+2+1\)
\(=2\left(x^2-2x+1\right)+1\)
\(=2\left(x-1\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-1=0
=>x=1
b: \(N=x^2-4x+5+y^2+2y^2\)
\(=x^2-4x+4+3y^2+1\)
\(=\left(x-2\right)^2+3y^2+1>=1\forall x,y\)
Dấu '=' xảy ra khi x-2=0 và y=0
=>x=2 và y=0
Bài 6:Tìm giá trị lớn nhất của biểu thức
a) A=-x2+6x-11 b) B=5-8x-x2 c) C=4x-x2+1
Bài 7:Tìm giá trị nhỏ nhất của biểu thức
a) A=x2-6x+11 b) B=x2-2x+y2+4y+8 c) C=x2-4xy+5y2+10x-22y+28
Bài 6:
a) Ta có: \(A=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x-3\right)^2-2\le-2\forall x\)
Dấu '=' xảy ra khi x=3
b) Ta có: \(B=-x^2-8x+5\)
\(=-\left(x^2+8x-5\right)\)
\(=-\left(x^2+8x+16-21\right)\)
\(=-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi x=-4
c) Ta có: \(C=-x^2+4x+1\)
\(=-\left(x^2-4x-1\right)\)
\(=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi x=2
Bài 7:
a) Ta có: \(x^2-6x+11\)
\(=x^2-6x+9+2\)
\(=\left(x-3\right)^2+2\ge2\forall x\)
Dấu '=' xảy ra khi x=3
Bài 1: Tìm giá trị nhỏ nhất của các biểu thức
a ) A= x2 – 2x+5
b) B= x2 –x +1
c) C= ( x -1). ( x +2). ( x+3). ( x+6)
d) D= x2 + 5y2 – 2xy+ 4y+3
Bài 2: Tìm giá trị lớn nhất của các biểu thức sau:
a) A= -x2 – 4x – 2
b) B= -2x2 – 3x +5
c) C= ( 2- x). ( x +4)
d) D= -8x2 + 4xy - y2 +3
Bài 3 : Chứng minh rằng các giá trị của các biểu thức sau luôn dương với mọi giá trị của biến
a) A= 25x – 20x+7
b) B= 9x2 – 6xy + 2y2 +1
c) E= x2 – 2x + y2 + 4y+6
d) D= x2 – 2x +2
Giúp mình nha. Cần gấp ạ <Chi tiết nha>
Bài 3:
a) Ta có: \(A=25x^2-20x+7\)
\(=\left(5x\right)^2-2\cdot5x\cdot2+4+3\)
\(=\left(5x-2\right)^2+3>0\forall x\)(đpcm)
d) Ta có: \(D=x^2-2x+2\)
\(=x^2-2x+1+1\)
\(=\left(x-1\right)^2+1>0\forall x\)(đpcm)
Bài 1:
a) Ta có: \(A=x^2-2x+5\)
\(=x^2-2x+1+4\)
\(=\left(x-1\right)^2+4\ge4\forall x\)
Dấu '=' xảy ra khi x=1
b) Ta có: \(B=x^2-x+1\)
\(=x^2-2\cdot x\cdot\dfrac{1}{2}+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
Tìm giá trị nhỏ nhất của các biểu thức
a. A = 4x2 + 4x + 11
b. B = (x - 1) (x + 2) (x + 3) (x + 6)
c. C = x2 - 2x + y2 - 4y + 7
Tìm giá trị lớn nhất của mỗi biểu thức
a) -x2 + 4x b) -x2 + 3x -1
Xét các số thực x, y thỏa mãn
√x2+y2+4x−2y+5+√x2+y2−8x−14y+65=6√2
Gọi m và M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của biểu thức T=x2+y2−2x+2y+2.Tính P = m + M
Bạn tham khảo nhé!
Câu hỏi của Lê VĂn Chượng - Toán lớp 10 - Học toán với OnlineMath
Tìm giá trị nhỏ nhất của biểu thức A, B, C, D và giá trị lớn nhất của biểu thức E, F:
A = x2 - 4x + 1
B = 4x2 + 4x + 11
C = (x -1)(x + 3)(x + 2)(x + 6)
D = 2x2 + y2 – 2xy + 2x – 4y + 9
E = 5 - 8x - x2
F = 4x - x2 +1
*Tìm giá trị nhỏ nhất
a) \(A=x^2-4x+1\)
Ta có: \(A=x^2-4x+1\)
\(=x^2-4x+4-5=\left(x-2\right)^2-5\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow\left(x-2\right)^2-5\ge-5\forall x\)
Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị nhỏ nhất của biểu thức \(A=x^2-4x+1\) là -5 khi x=2
b) \(B=4x^2+4x+11\)
Ta có: \(B=4x^2+4x+11\)
\(=\left(2x\right)^2+2\cdot2x\cdot1+1+10=\left(2x+1\right)^2+10\)
Ta có: \(\left(2x+1\right)^2\ge0\forall x\)
\(\Rightarrow\left(2x+1\right)^2+10\ge10\forall x\)
Dấu '=' xảy ra khi \(\left(2x+1\right)^2=0\Leftrightarrow2x+1=0\Leftrightarrow2x=-1\Leftrightarrow x=\frac{-1}{2}\)
Vậy: Giá trị nhỏ nhất của biểu thức \(B=4x^2+4x+11\) là 10 khi \(x=\frac{-1}{2}\)
*Tìm giá trị lớn nhất
e) \(E=5-8x-x^2\)
Ta có: \(E=5-8x-x^2\)
\(=-\left(-5+8x+x^2\right)=-\left(x^2+8x-5\right)=-\left(x^2+8x+16-21\right)=-\left(x+4\right)^2+21\)
Ta có: \(\left(x+4\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x+4\right)^2\le0\forall x\)
\(\Rightarrow-\left(x+4\right)^2+21\le21\forall x\)
Dấu '=' xảy ra khi \(\left(x+4\right)^2=0\Leftrightarrow x+4=0\Leftrightarrow x=-4\)
Vậy: Giá trị lớn nhất của biểu thức \(E=5-8x-x^2\) là 21 khi x=-4
f) \(F=4x-x^2+1\)
Ta có: \(F=4x-x^2+1\)
\(=-\left(-4x+x^2-1\right)\)
\(=-\left(x^2-4x-1\right)=-\left(x^2-4x+4-5\right)\)
\(=-\left(x-2\right)^2+5\)
Ta có: \(\left(x-2\right)^2\ge0\forall x\)
\(\Rightarrow-\left(x-2\right)^2\le0\forall x\)
\(\Rightarrow-\left(x-2\right)^2+5\le5\forall x\)
Dấu '=' xảy ra khi \(\left(x-2\right)^2=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Vậy: Giá trị lớn nhất của biểu thức \(F=4x-x^2+1\) là 5 khi x=2
tìm giá trị nhỏ nhất của các biểu thức sau
a. A = x2 - 4x + 6
b. B = y2 - y + 1
c . C = x2 - 4x + y2 - y + 5
a.
\(A=x^2-4x+4+2=\left(x-2\right)^2+2\ge2\)
GTNN của A đạt 2 khi và chỉ khi \(x=2\)
b.
\(B=y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+\dfrac{3}{4}=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
GTNN của B đạt \(\dfrac{3}{4}\) khi và chỉ khi \(y=\dfrac{1}{2}\)
c.
\(C=x^2-4x+4+y^2-2.\dfrac{1}{2}y+\dfrac{1}{4}+\dfrac{3}{4}\\ =\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
GTNN của C đạt \(\dfrac{3}{4}\) khi và chỉ khi \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
a) \(A=x^2-4x+6\)
\(A=x^2-4x+4+2\)
\(A=\left(x-2\right)^2+2\)
Mà: \(\left(x-2\right)^2\ge0\forall x\) nên \(A=\left(x-2\right)^2+2\ge2\forall x\)
Dấu "=" xảy ra:
\(\left(x-2\right)^2+2=2\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)
Vậy: \(A_{min}=2\) khi \(x=2\)
b) \(B=y^2-y+1\)
\(B=y^2-2\cdot\dfrac{1}{2}\cdot y+\dfrac{1}{4}+\dfrac{3}{4}\)
\(B=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left(y-\dfrac{1}{2}\right)^2\ge\forall x\) nên \(B=\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra:
\(\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=\dfrac{3}{4}\Leftrightarrow y-\dfrac{1}{2}=0\)
\(\Leftrightarrow y=\dfrac{1}{2}\)
Vậy \(B_{min}=\dfrac{3}{4}\) khi \(y=\dfrac{1}{2}\)
c) \(C=x^2-4x+y^2-y+5\)
\(C=x^2-4x+4+y^2-y+\dfrac{1}{4}+\dfrac{3}{4}\)
\(C=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Mà: \(\left\{{}\begin{matrix}\left(x-2\right)^2\ge0\forall x\\\left(y-\dfrac{1}{2}\right)^2\ge0\forall x\end{matrix}\right.\) nên
\(C=\left(x-2\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu "=" xảy ra:
\(\left\{{}\begin{matrix}x-2=0\\y-\dfrac{1}{2}=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)
Vậy: \(C_{min}=\dfrac{3}{4}\) khi \(\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)