Cho tam giác ABC có sinA+sinB= cosA+cosB. Chứng minh rằng tam giác ABC vuông.
cho tam giác abc có 3 góc nhọn. Vẽ đường cáo AD, BE, CF cắt nhau tại H. Chứng minh:
a) \(0< cos^2A+cos^2B+cos^2C< 1\)
b)\(2< sin^2A+sin^2B+sin^2C< 3\)
c)sinA + sinB + sinC < 2( cosA + cosB + cosC)
d)sinB . cosC + sinC . cosB = sinA
e)tanA + tanB + tanC = tanA . tanB . tanC
Tìm tính chất của tam giác ABC thỏa:
sinA+sinB+sinC=1-cosA+cosB+cosC
TL:
sinA+sinB+sinC=1-cosA+cosB+cosC => Tam giác ABC Vuông tại A
Vế trái = sinA + sinB + sinC
= 2sin(A + B)/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2.cos(A - B)/2 + 2sinC/2.cosC/2
= 2cosC/2[cos(A - B)/2 + sinC/2]
=2.cosC/2.[cos(A - B)/2 + cos(A + B)/2]
= 4.cosC/2.cosB/2.cosA/2
Vế phải = 1 - cosA + cosB + cosC
= 2sin²A/2 + 2cos(B + C)/2.cos(B - C)/2
= 2.sinA/2[sinA/2 + cos(B - C)/2] (vì cos(B + C)/2 = sinA/2)
= 2.sinA/2[cos(B + C)/2 + cos(B - C)/2
= 4.sinA/2.cosB/2.cosC/2
Vậy sinA + sinB + sinC = 1 - cosA + cosB + cosC
<=> cosA/2.cosB/2.cosC/2 = sinA/2.cosB/2.cosC/2
<=> cosB/2.cosC/2(sinA/2 - cosA/2) = 0
mà cosB/2 ≠ 0 và cosC/2 ≠ 0
=> sinA/2 = cosA/2
<=> A/2 = 45o
<=> A = 90o
tam giác ABC vuông tại A
cho tam giác abc nhọn. chứng minh rằng:
sinA+sinB+sinC<2(cosA+cosB+cosC)
Cho tam giác ABC vuông tại C . Hãy tinhs sinA,cosA,tgA,sinB,cosB,tgB,cotgB biết cotgA=1
chứng minh rằng nếu tam giác ABC thỏa mãn điều kiện \(\dfrac{sinA}{sinB}=\dfrac{cosB+cosC}{cosC+cosA}\)thì tam giác ABC vuông hoặc cân
Dựa vào các công thức cộng đã học:
sin(a + b) = sina cosb + sinb cosa;
sin(a – b) = sina cosb - sinb cosa;
cos(a + b) = cosa cosb – sina sinb;
cos(a – b) = cosa cosb + sina sinb;
và kết quả cos π/4 = sinπ/4 = √2/2, hãy chứng minh rằng:
a) sinx + cosx = √2 cos(x - π/4);
b) sin x – cosx = √2 sin(x - π/4).
a) √2 cos(x - π/4)
= √2.(cosx.cos π/4 + sinx.sin π/4)
= √2.(√2/2.cosx + √2/2.sinx)
= √2.√2/2.cosx + √2.√2/2.sinx
= cosx + sinx (đpcm)
b) √2.sin(x - π/4)
= √2.(sinx.cos π/4 - sin π/4.cosx )
= √2.(√2/2.sinx - √2/2.cosx )
= √2.√2/2.sinx - √2.√2/2.cosx
= sinx – cosx (đpcm).
Cho tam giác ABC nhọn. Chứng minh rằng cosA + cosB + cosC = AB^2 + AC^2 + BC^2/4.S.ABC
Xét tam giác ABC nhọn có \(BC^2=AB^2+AC^2-2AB\cdot AC\cdot\cos\widehat{A}\)
\(\Rightarrow\cos\widehat{A}=\dfrac{AB^2+AC^2-BC^2}{2AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4\cdot\dfrac{1}{2}AB\cdot AC}=\dfrac{AB^2+AC^2-BC^2}{4S_{ABC}}\)
Cmtt: \(\left\{{}\begin{matrix}\cos\widehat{B}=\dfrac{AB^2+BC^2-AC^2}{4S_{ABC}}\\\cos\widehat{C}=\dfrac{AC^2+BC^2-AB^2}{4S_{ABC}}\end{matrix}\right.\)
\(\Rightarrow\cos\widehat{A}+\cos\widehat{B}+\cos\widehat{C}\\
=\dfrac{AB^2+AC^2-BC^2+AB^2+BC^2-AC^2+AC^2+BC^2-AB^2}{4S_{ABC}}\\
=\dfrac{AB^2+AC^2+BC62}{4S_{ABC}}\)
Cho A, B, C là 3 góc trong tam giác. Chứng minh rằng:
1, sin A + sin B - sin C = 4sin\(\dfrac{A}{2}\) sin \(\dfrac{B}{2}\)sin \(\dfrac{C}{2}\)
2, \(\dfrac{sinA+sinB-sinC}{cosA+cosB-cosC+1}=tan\dfrac{A}{2}tan\dfrac{B}{2}tan\dfrac{C}{2}\) (ΔABC nhọn)
3, \(\dfrac{cosA+cosB+cosC+3}{sinA+sinB+sinC}=tan\dfrac{A}{2}+tan\dfrac{B}{2}+tan\dfrac{C}{2}\)
GIÚP MÌNH VỚI!!!
1.
\(sinA+sinB-sinC=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-sin\left(A+B\right)\)
\(=2sin\dfrac{A+B}{2}.cos\dfrac{A-B}{2}-2sin\dfrac{A+B}{2}.cos\dfrac{A+B}{2}\)
\(=2sin\dfrac{A+B}{2}.\left(cos\dfrac{A-B}{2}-cos\dfrac{A+B}{2}\right)\)
\(=2sin\dfrac{A+B}{2}.2sin\dfrac{A}{2}.sin\dfrac{B}{2}\)
\(=4sin\dfrac{A}{2}.sin\dfrac{B}{2}.cos\dfrac{C}{2}\)
Sao t lại đc như này v, ai check hộ phát
cho tam giác ABC nhọn. Chứng mnh rằng cosA+cosB+cosC=3/2 khi và chỉ khi tam giác ABC đều
Ta chứng minh chiều nghịch:
Khi tam giác ABC đều, góc A=gócB=gócC=60*
Khi đó cosA+cosB+cosC=3/2(đpcm)
Ta chứng minh chiều thuận
Ta chứng minh cosA+cosB+cosC≤3/2
Thật vậy:
Mà theo gt, cosA+cosB+cosC=3/2
nên ta có tam giác ABC đều(đpcm)
vẽ AD,BE, CF là các đường cao của tam giác ABC
\(\cos A=\sqrt{\cos BAE\cdot\cos CAF}=\sqrt{\frac{AE}{AB}\cdot\frac{AE}{AC}}=\sqrt{\frac{AF}{AB}\cdot\frac{AE}{AC}}\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\)
ta có \(\cos A\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}\right)\left(1\right)\)
tương tự \(\cos B\le\frac{1}{2}\left(\frac{BF}{AB}+\frac{BD}{BC}\right)\left(2\right);\cos C\le\frac{1}{2}\left(\frac{CD}{BC}+\frac{CE}{AC}\right)\left(3\right)\)
do đó \(\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{AE}{AC}+\frac{BF}{AB}+\frac{BD}{BC}+\frac{CD}{BC}+\frac{CE}{AC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{1}{2}\left(\frac{AF}{AB}+\frac{BF}{AB}+\frac{AE}{AC}+\frac{CE}{AC}+\frac{BD}{BC}+\frac{CD}{BC}\right)\)
\(\Rightarrow\cos A+\cos B+\cos C\le\frac{3}{2}\)
dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\frac{AF}{AB}=\frac{AE}{AC}\\\frac{BF}{AB}=\frac{BD}{BC}\\\frac{CD}{BC}=\frac{CE}{AC}\end{cases}}\Leftrightarrow AB=AC=BC\)
do vậy cosA+cosB+cosC=3/2 <=> AB=AC=BC <=> tam giác ABC đều
Cách khác khỏi phải dùng hình học :v
\(A=\cos A+\cos B+\cos C\)
\(=\left(\cos A+\cos B\right)\cdot1+\sin A\cdot\sin B-\cos A\cdot\cos B\)
\(\le\frac{1}{2}\left[\left(\cos A+\cos B\right)^2+1\right]+\frac{1}{2}\left(\sin^2A+\sin^2B\right)-\cos A\cdot\cos B\)
\(=\frac{1}{2}\left(\cos^2A+\sin^2A+\cos^2B+\sin^2B\right)+\frac{1}{2}\)
\(=\frac{3}{2}\)
ez Problem :v