Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Thị Hằng
Xem chi tiết
Nguyễn Việt Lâm
25 tháng 9 2019 lúc 23:53

\(A=\frac{1}{x^2+xy+y^2}+\frac{\frac{1}{9}}{xy}+4xy+\frac{1}{4xy}+\frac{23}{36xy}\)

\(A\ge\frac{\left(1+\frac{1}{3}\right)^2}{x^2+2xy+y^2}+2\sqrt{\frac{4xy}{4xy}}+\frac{23}{9\left(x+y\right)^2}\)

\(A\ge\frac{16}{9\left(x+y\right)^2}+2+\frac{23}{9\left(x+y\right)^2}=\frac{19}{3}\)

\(A_{min}=\frac{19}{3}\) khi \(x=y=\frac{1}{2}\)

hatsune miku
Xem chi tiết
Bùi Đình Bảo
2 tháng 10 2017 lúc 23:07

min P=2,5 khi x=1, y= 2.

Lê Minh Đức
Xem chi tiết
Lầy Văn Lội
31 tháng 5 2017 lúc 0:22

ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)

Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)

\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla

Trần Hữu Ngọc Minh
Xem chi tiết
Trần Hữu Ngọc Minh
3 tháng 10 2017 lúc 17:13

mình làm ra rồi khỏi cần giúp nữa

Tooru Aki
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 3 2021 lúc 22:17

\(Q=\frac{x^3}{4\left(y+2\right)}+\frac{y^3}{4\left(x+2\right)}=\frac{x^3\left(x+2\right)}{4\left(x+2\right)\left(y+2\right)}+\frac{y^3\left(y+2\right)}{4\left(x+2\right)\left(y+2\right)}\)

\(=\frac{x^4+y^4+2x^3+2y^3}{4\left(x+2\right)\left(y+2\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(xy+2x+2y+4\right)}\)

\(=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{4\left(2x+2y+8\right)}=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\)

Áp dụng bất đẳng thức AM-GM ta có :

\(x^4+y^4\ge2\sqrt{x^4y^4}=2x^2y^2\)

\(x^2+y^2\ge2\sqrt{x^2y^2}=2xy\)

\(Q=\frac{x^4+y^4+2\left(x+y\right)\left(x^2-xy+y^2\right)}{8\left(x+y+4\right)}\ge\frac{2x^2y^2+2xy\left(x+y\right)}{8\left(x+y+4\right)}=\frac{2xy\left(xy+x+y\right)}{8\left(x+y+4\right)}=\frac{8\left(x+y+4\right)}{8\left(x+y+4\right)}=1\)

Đẳng thức xảy ra <=> \(\hept{\begin{cases}x,y>0\\x=y\\xy=4\end{cases}}\Rightarrow x=y=2\)

Vậy GTNN của Q là 1 <=> x = y = 2

Khách vãng lai đã xóa
Kiệt Nguyễn
17 tháng 3 2021 lúc 12:36

Or

\(Q-1=\frac{\left(x^2-y^2\right)^2+2\left(x+y\right)\left(x^2+y^2-8\right)}{4\left(x+2\right)\left(y+2\right)}\ge0\)*đúng do \(x^2+y^2\ge2xy=8\)*

Do đó \(Q\ge1\)

Đẳng thức xảy ra khi x = y = 2

Khách vãng lai đã xóa
Lăng
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 4 2020 lúc 13:26

Bài 3:

a) Ta có: \(x^2+3x+3\)

\(=x^2+2\cdot x\cdot\frac{3}{2}+\frac{9}{4}+\frac{3}{4}\)

\(=\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\)

Ta có: \(\left(x+\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow\left(x+\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)

Dấu '=' xảy ra khi \(\left(x+\frac{3}{2}\right)^2=0\Leftrightarrow x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

Vậy: Giá trị nhỏ nhất của biểu thức \(P=x^2+3x+3\)\(\frac{3}{4}\) khi \(x=\frac{-3}{2}\)

b) Ta có: \(Q=x^2+2y^2+2xy-2y\)

\(=x^2+2xy+y^2+y^2-2y+1-1\)

\(=\left(x+y\right)^2+\left(y-1\right)^2-1\)

Ta có: \(\left(x+y\right)^2\ge0\forall x,y\)

\(\left(y-1\right)^2\ge0\forall y\)

Do đó: \(\left(x+y\right)^2+\left(y-1\right)^2\ge0\forall x,y\)

\(\Rightarrow\left(x+y\right)^2+\left(y-1\right)^2-1\ge-1\forall x,y\)

Dấu '=' xảy ra khi

\(\left\{{}\begin{matrix}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+1=0\\y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-1\\y=1\end{matrix}\right.\)

Vậy: Giá trị nhỏ nhất của biểu thức \(Q=x^2+2y^2+2xy-2y\) là -1 khi x=-1 và y=1

Omamori Katori
Xem chi tiết
tth_new
2 tháng 11 2019 lúc 20:19

\(M=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{1}{2xy}\ge\frac{4}{x^2+y^2+2xy}+\frac{2}{\left(x+y\right)^2}\)

\(=\frac{6}{\left(x+y\right)^2}=6\)

Đẳng thức xảy ra khi \(x=y=\frac{1}{2}\)

Khách vãng lai đã xóa
Nguyễn Ngọc Phương Thảo
Xem chi tiết
vũ tiền châu
10 tháng 1 2018 lúc 17:40

Áp dụng BĐT svacxơ, ta có 

\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}\ge\frac{4}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\ge4\)

Dấu = xảy ra <=>x=y=1/2

^_^

Ba Dấu Hỏi Chấm
Xem chi tiết
vũ tiền châu
7 tháng 9 2017 lúc 21:10

a) ta có \(x+y=1\Rightarrow\left(x+y\right)^2=1\)

Áp dụng bđt cô si ta có \(2xy\le x^2+y^2\Rightarrow4xy\le\left(x+y\right)^2=1\Rightarrow2xy\le\frac{1}{2}\)

=> \(\frac{1}{2xy}\ge2\)

dấu = xảy ra <=> x=y=1/2

NTN Vlog
7 tháng 9 2017 lúc 21:05

-868997

Ba Dấu Hỏi Chấm
7 tháng 9 2017 lúc 21:06

Tui cần cả cách làm lẫn kết quả nha bạn