\(A=\frac{1}{x^2+xy+y^2}+\frac{\frac{1}{9}}{xy}+4xy+\frac{1}{4xy}+\frac{23}{36xy}\)
\(A\ge\frac{\left(1+\frac{1}{3}\right)^2}{x^2+2xy+y^2}+2\sqrt{\frac{4xy}{4xy}}+\frac{23}{9\left(x+y\right)^2}\)
\(A\ge\frac{16}{9\left(x+y\right)^2}+2+\frac{23}{9\left(x+y\right)^2}=\frac{19}{3}\)
\(A_{min}=\frac{19}{3}\) khi \(x=y=\frac{1}{2}\)