\(\frac{x+\sqrt{xy}}{\sqrt{x}-\sqrt{y}}\)
cac ban chi cach triet tieu giup minh ik =')))
\(\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+....+\frac{1}{\sqrt{99}+\sqrt{100}}\)
giup minh voi
cam on nhieu
cac ban giai chi tiet giup minh nha
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a+1}-\sqrt{a}}{\left(\sqrt{a}+\sqrt{a+1}\right)\left(\sqrt{a+1}-\sqrt{a}\right)}=\frac{\sqrt{a+1}-\sqrt{a}}{a+1-a}=\sqrt{a+1}-\sqrt{a}\Rightarrow\frac{1}{1+\sqrt{2}}+\frac{1}{\sqrt{2}+\sqrt{3}}+.......+\frac{1}{\sqrt{99}+\sqrt{100}}=-1+\sqrt{2}-\sqrt{2}+\sqrt{3}-......-\sqrt{99}+\sqrt{100}=10-1=9\)
cac ban ho minh bai nay nha
\(A=\sqrt{x+2}+\frac{3}{11};B=\frac{5}{7}-3\cdot\sqrt{x-5}\)
giup minh lam bai nay nhe
cam on cac ban nhieu
a. Giá trị nhỏ nhất của A=\(\sqrt{2}+\frac{3}{11}\)
không có giá trị lớn nhất
b. Giá trị lớn nhất của B là \(\frac{5}{7}\) khi x=5 không có GTLN
dùng phần mềm viết không chuẩn do chưa quen
GTNN của A là 3/11 khi x=-2
GTLN của B la 5/7 khi x=-5
\(\frac{\sqrt{3}}{\sqrt{\sqrt{3}+1}-1}-\frac{\sqrt{3}}{\sqrt{\sqrt{3}-1}+1}\)
bai nay bang may chi giup minh voi
chu y nho gi cach giai
Bai 1: cho \(n\inℕ^∗\). CMR : \(\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.....\frac{2n-1}{2n}< =\frac{1}{\sqrt{3n+1}}\). <= nghia la be hon hoac bang nha cac ban
Bai 2 : Cho a>0;b>0. CMR : \(\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}< =\sqrt{\sqrt{ab}}\)
Bai 3: Cho x, y, z > 0 và x + y + z = 1. Chứng minh rằng:\(\sqrt{x+yz}+\sqrt{y+zx}+\sqrt{z+xy}>=1+\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\)
\(3,\)Áp dụng bđt Mincopski \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\)hai lần có
\(VT\ge\sqrt{\left(\sqrt{x}+\sqrt{y}\right)^2+\left(\sqrt{yz}+\sqrt{zx}\right)^2}+\sqrt{z+xy}\)
\(\ge\sqrt{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{x+y+z+2\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)+\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)^2}\)
\(=\sqrt{1+2t+t^2}\left(t=\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)\)
\(=\sqrt{\left(t+1\right)^2}=t+1=VP\left(Đpcm\right)\)
\(2,\frac{2\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\le\frac{2\sqrt{ab}}{2\sqrt{\sqrt{a}.\sqrt{b}}}=\sqrt{\sqrt{ab}}\left(đpcm\right)\)
(\(\frac{x-2\sqrt{x}-1}{x-4}\) - 1 ) / (\(\frac{4-x}{x-\sqrt{x}-6}\) - \(\frac{\sqrt{x}-2}{3-\sqrt{x}}\)- \(\frac{\sqrt{x}-3}{\sqrt{x}+2}\) )
Cac ban oi giup mk nha
\(=\left(\frac{x-2\sqrt{x}-1}{x-4}-\frac{x-4}{x-4}\right):\left[\frac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)
\(=\frac{x-2\sqrt{x}-1-x+4}{x-4}:\left[\frac{\sqrt{x}-2}{\sqrt{x}+3}+\frac{\sqrt{x}-2}{\sqrt{x}-3}-\frac{\sqrt{x}-3}{\sqrt{x}+2}\right]\)
\(=\frac{3-2\sqrt{x}}{x-4}:\frac{\left(x-4\right)\left(\sqrt{x}-3\right)+\left(x-4\right)\left(\sqrt{x}+3\right)-\left(x-9\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x-3}\right)\left(\sqrt{x}+2\right)}\)
bạn làm tiếp nha! làm bằng máy tính phức tạp lắm
Chứng minh rằng: A = \(\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)không phụ thuộc vào x;y với x > 0 và y > 0
Các bạn lm chi tiết giúp mk nhé!
\(A=\dfrac{x-2\sqrt{xy}+y+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}-\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{\sqrt{xy}}\\ A=\dfrac{\left(\sqrt{x}+\sqrt{y}\right)^2}{\sqrt{x}+\sqrt{y}}-\sqrt{x}+\sqrt{y}\\ A=\sqrt{x}+\sqrt{y}-\sqrt{x}+\sqrt{y}=2\sqrt{y}\)
Đề sai
\(A=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2+4\sqrt{xy}}{\sqrt{x}+\sqrt{y}}+\dfrac{x\sqrt{y}-y\sqrt{x}}{\sqrt{xy}}\)
\(=\sqrt{x}+\sqrt{y}+\sqrt{x}-\sqrt{y}\)
\(=2\sqrt{x}\)
tim max cua\(\sqrt{14-x}+\sqrt{x-10}\).
cac ban giup minh giai nhe, minh can rất gấp ạ
\(A=\sqrt{14-x}+\sqrt{x-10}\)
Đk:\(10\le x\le14\)
\(A^2=\left(\sqrt{14-x}+\sqrt{x-10}\right)^2\)
\(=\left(14-x\right)+\left(x-10\right)+2\sqrt{\left(14-x\right)\left(x-10\right)}\)
\(=4+2\sqrt{\left(14-x\right)\left(x-10\right)}\)
\(\le4+\left(14-x\right)+\left(x-10\right)\) (BĐT AM-GM)
\(=4+4=8\Rightarrow A^2\le8\Rightarrow A\le\sqrt{8}\)
Mong cac ban giup minh
tim so x khong am biet
\(\sqrt{X}< \sqrt{2}\)
\(\sqrt{X}< 3\)
Chứng minh:
\(\left(\frac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}-\frac{\sqrt{x}-\sqrt{y}}{\sqrt{x}+\sqrt{y}}\right):\frac{\sqrt{xy}}{x-y}=4\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge0\\x\ne y\end{matrix}\right.\)
Ta có:
\(VT=\left(\frac{\left(\sqrt{x}+\sqrt{y}\right)^2-\left(\sqrt{x}-\sqrt{y}\right)^2}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right):\frac{\sqrt{xy}}{x-y}\\ =\left(\frac{x+2\sqrt{x}\cdot\sqrt{y}+y-x+2\sqrt{x}\cdot\sqrt{y}-y}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}\right):\frac{\sqrt{xy}}{x-y}\\ =\frac{4\sqrt{xy}}{x-y}\cdot\frac{x-y}{\sqrt{xy}}\\ =4=VP\left(đpcm\right)\)