BÀI 1 TÍNH
a] A = 1+2+3+4+5+.............+99+100
b] B= 1+3+5+7+...........+99
Tính tổng sau : A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 + ... + 99 - 100
B=1–2- 3+4+5-6-7+8+...+97-98-99+100
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +....+ 99 - 100
A = (1 - 2) + ( 3- 4) + ....+ (99 - 100)
Xét dãy số 1; 3;...; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 3 - 1 = 2
Số số hạng của dãy số trên là: ( 99 - 1): 2 + 1 = 50
A là tổng của 50 nhóm mỗi nhóm cóa giá tri là: 1 - 2 = - 1
A = - 1 \(\times\) 50 = - 50
B = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 +...+ 97 - 98 - 99 + 100
B = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7 + 8) +...+ ( 97 - 98 - 99 + 100)
B = 0 + 0 +...+ 0
B = 0
bài 4: rút gọn
A= 1+5+5^2+5^3+5^4 + ........ +5^99 + 5^100
B= 1-5+5^2-5^3 + ...... - 3^99 + 5^100
Tính :
A 1/10×11 +1/11×12+1/12×13+...+1/99×100B 1/1×3+1/3×5+1/5×7+...+1/97×99
A=\(\frac{1}{10.11}\)+\(\frac{1}{11.12}\)+...+\(\frac{1}{99.100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{11}\)+\(\frac{1}{11}\)-\(\frac{1}{12}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
⇒A=\(\frac{1}{10}\)-\(\frac{1}{100}\)
⇒A=\(\frac{9}{100}\)
Vậy A=\(\frac{9}{100}\)
B=\(\frac{1}{1.3}\)+\(\frac{1}{3.5}\)+...+\(\frac{1}{97.99}\)
=\(\frac{1}{2}\).\((1-\frac{1}{3})\)+\(\frac{1}{2}.(\frac{1}{3}-\frac{1}{5})\)+...+\(\frac{1}{2}.(\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{97}-\frac{1}{99})\)
=\(\frac{1}{2}.\frac{98}{99}\)
=\(\frac{49}{99}\)
Vậy B=\(\frac{49}{99}\)
A=1/2+1/3+1/4+....+1/100
B=99/1+98/2+97/3+....+2/98+1/99
bài 1
A=1*2*3+2*3*4+3*4*5+...+99*100*101
B=1*3*5+3*5*7+...+95*97*99
C=2*4+4*6+..+98*100
D=1*2+3*4+5*6+...+99*100
E=1^2+2^2+3^2+...+100^2
G=1*3+2*4+3*5+4*6+...+99*101+100*102
H=1*2^2+2*3^2+3*4^2+...+99*100^2
I=1*2*3+3*4*5+5*6*7+7*8*9+...+98*99*100
K=1^2+3^2+5^2+...+99^2
A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101
=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4
=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)
=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101
=> 4A = 99*100*101*102
=> 4A = 101989800
=> A = 25497450
a.1-2+3-4+......+99-100
b.2-4+6-8+......-48+50
c.1+2-3-4+.......+97+98-99-100
a: 1-2+3-4+...+99-100
=(1-2)+(3-4)+...+(99-100)
=(-1)+(-1)+...+(-1)
=-1*50=-50
c: 1+2-3-4+....+97+98-99-100
=(1+2-3-4)+(5+6-7-8)+...+(97+98-99-100)
=(-4)+(-4)+...+(-4)
=(-4)*25=-100
Bài 1: Tính
a, A = 7 + 7^3 + 7^5 + ...... + 7^151
b, B = 11^4 + 11^5 + 11^6 + ....... + 11^50
c, C = ( 2/3 )^4 + ( 2/3 )^5 + ( 2/3 )^6 + ..... + ( 2/3 )^100 ( 2/3 nghĩa là 2 phần 3 )
d, D = 5^100 - 5^99 - 5^98 - 5^97 -.....- 5^2 - 5 - 1
Bài 2: Cho A = 1 + 4 + 4^2 + ..... + 4^99
B = 4^100
a, Tìm B - A
b, Chứng minh rằng A < B/3 ( B/3 nghĩa là B phần 3 )
Bài 3 : Tính
a, A = 7^2 + 14^2 + 21^2 + 28^2 + ...... + 371^2
b, B = 11^2 + 22^2 + 33^2 + ...... + 1661^2
Bài 4 : Tính
A = 99 x 1 + 98 x 2 + 97 x 3 + ....... + 3 x 97 + 2 x 98 +1 x 99
Bài 1: Tính giá trị biểu thức
a.) A = 1 - 3 + 5 - 7 + 9 - 11 + ... + 97 - 99
b.) B = - 1 - 2 - 3 - 4 - ... - 100
c.) C = 1 - 2 + 3 - 4 + 5 - 6 + ... + 99 - 100
d.) D = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - ... - 94 - 95
a/ A= 1-3+5-7+9-11+......+97-99
= -2+(-2)+(-2)+......+(-2)
= (-2).25=-50
b/B=-1-2-3-4-...-100
=-(1+2+3+4+...+100)
=-5050
c/C=1-2+3-4+5-6+......+99-100
= -1+(-1)+(-1)+.............+(-1)
=(-1).50=-50
d/D=1-2-3+4+5-6-7+8+9-....+94-95
= (1-2-3+4)+(5-6-7+8)+.......+(92-93-94+95)
= 0+0+0+...+0=0
Bài 1:
a) A= 1-2+3-4+5-6+...+99-100
b) B=1+2-3-4+5+6-7-8+9+10-11-12+...+97+98-99-100
a) A= 1-2+3-4+5-6+...+99-100
A = ( 1 - 2 ) + ( 3 - 4 ) + ( 5 - 6 ) + ... + ( 99 - 100 ) ( có 50 cặp )
A = ( - 1 ) + ( -1 ) + ( -1 ) + ,.. + ( -1 )
A = ( - 1 ) . 50
A = -50
b) B = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - 11 - 12 + ... + 97 + 98 - 99 - 100
B = ( 1 + 2 - 3 - 4 ) + ( 5 + 6 - 7 - 8 ) + ( 9 + 10 - 11 - 12 ) + ... + ( 97 + 98 - 99 - 100 ) ( có 25 cặp )
B = ( - 4 ) + ( - 4 ) + ( - 4 ) + ... + ( - 4 )
B = ( - 4 ) x 25
B = -100