Tìm GTNN của:
A = x2 - 8x +3
Bài 1: Tìm giá trị nhỏ nhất của:
a) A= x2 + 2x + 4
b) B= x2 - 20x + 101
c) C= x2 - 2x + y2 + 4y + 8
Bài 2: Tìm giá trị lớn nhất của:
A = 5 - 8x - x2
B = x - x2
C = 4x - x2 + 3
D = -x2 + 6x - 11
Bài 1:
a: \(A=x^2+2x+4\)
\(=x^2+2x+1+3\)
\(=\left(x+1\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
Vậy: \(A_{min}=3\) khi x=-1
b: \(B=x^2-20x+101\)
\(=x^2-20x+100+1\)
\(=\left(x-10\right)^2+1>=1\forall x\)
Dấu '=' xảy ra khi x-10=0
=>x=10
Vậy: \(B_{min}=1\) khi x=10
c: \(C=x^2-2x+y^2+4y+8\)
\(=x^2-2x+1+y^2+4y+4+3\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)
Dấu '=' xảy ra khi x-1=0 và y+2=0
=>x=1 và y=-2
Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)
Bài 2:
a: \(A=5-8x-x^2\)
\(=-\left(x^2+8x\right)+5\)
\(=-\left(x^2+8x+16-16\right)+5\)
\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)
Dấu '=' xảy ra khi x+4=0
=>x=-4
b: \(B=x-x^2\)
\(=-\left(x^2-x\right)\)
\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)
\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)
Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)
=>\(x=\dfrac{1}{2}\)
c: \(C=4x-x^2+3\)
\(=-x^2+4x-4+7\)
\(=-\left(x^2-4x+4\right)+7\)
\(=-\left(x-2\right)^2+7< =7\forall x\)
Dấu '=' xảy ra khi x-2=0
=>x=2
d: \(D=-x^2+6x-11\)
\(=-\left(x^2-6x+11\right)\)
\(=-\left(x^2-6x+9+2\right)\)
\(=-\left(x-3\right)^2-2< =-2\forall x\)
Dấu '=' xảy ra khi x-3=0
=>x=3
1. Tìm giá trị nhỏ nhất của:
a) A= x2 - 8x + 20
b) B = x2 - x + 1
Bài 2: Tìm giá trị nhỏ nhất, giá trị lớn nhất (nếu có) của:
a) A = x2 - 4x + 1
b) B = -x2 - 8x + 5
c) C = 2x2 - 8x +19
d) D = -3x2 - 6x +1
a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
\(minA=-3\Leftrightarrow x=2\)
b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)
\(maxB=21\Leftrightarrow x=-4\)
c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)
\(minC=11\Leftrightarrow x=2\)
d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)
\(maxD=4\Leftrightarrow x=-1\)
a) A = (x-2)^2 - 3 >= -3
--> A nhỏ nhất bằng -3
<=> x = 2
b) B = -(x+4)^2 + 21 <= 21
--> B lớn nhất bằng 21
<=> x = -4
Tìm GTNN: B=x2+4y+4y2+8x+42
\(B=x^2+4y+4y^2+8x+42=\left(x^2+8x+16\right)+\left(4y^2+4y+1\right)+25=\left(x+4\right)^2+\left(2y+1\right)^2+25\ge25\)
Dấu = xảy ra khi x = -4; y = -1/2
\(B=x^2+4y+4y^2+8x+42\)
\(B=x^2+8x+16+4y^2+4y+1+25\)
\(B=\left(x+4\right)^2\left(2y+1\right)^2+25\)
GTNN của B là 25
xảy ra khi (x+4)2=0 hoặc (2y+1)2=0
x+4=0 hoặc 2y+1=0
x=-4 hoặc 2y=-1
x= -4 hoặc y=-1/2
Cho A=x2+8x+7. Tìm GTNN của A
\(A=x^2+8x+16-9=\left(x+4\right)^2-9\ge-9\forall x\)
Dấu '=' xảy ra khi x=-4
Baì 1:Tìm GTNN của các biểu thức sau:
a.A=x2-8x+5
b.B=2x2+6x-4
c.C=-x2+x+1
d.D=x2-x+1
a.
$A=x^2-8x+5=(x^2-8x+16)-11=(x-4)^2-11$
Do $(x-4)^2\geq 0, \forall x\in\mathbb{R}$
$\Rightarrow A=(x-4)^2-11\geq 0-11=-11$
Vậy $A_{\min}=-11$. Giá trị này đạt tại $x-4=0\Leftrightarrow x=4$
b.
$B=2x^2+6x-4=2(x^2+3x+1,5^2)-\frac{17}{2}=2(x+1,5)^2-\frac{17}{2}$
$\geq 2.0-\frac{17}{2}=-\frac{17}{2}$
Vậy $B_{\min}=\frac{-17}{2}$ tại $x=-1,5$
c. Biểu thức này không có min, chỉ có max
d.
$D=x^2-x+1=(x^2-2.\frac{1}{2}.x+\frac{1}{2^2})+\frac{3}{4}$
$=(x-\frac{1}{2})^2+\frac{3}{4}\geq 0+\frac{3}{4}$
Vậy $D_{\min}=\frac{3}{4}$. Giá trị này đạt tại $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$
Tìm GTNN của biểu thức sau: A=x2+y2-8x-y+68
\(A=x^2+y^2-8x-y+68=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\)
\(minA=\dfrac{207}{4}\Leftrightarrow\)\(\left\{{}\begin{matrix}x=4\\y=\dfrac{1}{2}\end{matrix}\right.\)
\(A=x^2-8x+y^2-y+68\)
\(=x^2-8x+16+y^2-y+\dfrac{1}{4}+\dfrac{207}{4}\)
\(=\left(x-4\right)^2+\left(y-\dfrac{1}{2}\right)^2+\dfrac{207}{4}\ge\dfrac{207}{4}\forall x,y\)
Dấu '=' xảy ra khi x=4 và \(y=\dfrac{1}{2}\)
Tìm GTNN hoặc GTLN của:
a) A=|2x-1|-4 (GTLN)
b) B = 1,5-|2-x| (GTLN)
c) C = |x-3|(GTNN)
d)D = 10-4|x-2|(GTLN)
a) Sửa đề: Tìm GTNN
A = |2x - 1| - 4
Ta có:
|2x - 1| ≥ 0 với mọi x ∈ R
⇒ |2x - 1| - 4 ≥ -4 với mọi x ∈ R
Vậy GTNN của A là -4 khi x = 1/2
b) B = 1,5 - |2 - x|
Ta có:
|2 - x| ≥ 0 với mọi x ∈ R
⇒ -|2 - x| ≤ 0 với mọi x ∈ R
⇒ 1,5 - |2 - x| ≤ 1,5 với mọi x ∈ R
Vậy GTLN của B là 1,5 khi x = 2
c) C = |x - 3| ≥ 0 với mọi x ∈ R
Vậy GTNM của C là 0 khi x = 3
d) D = 10 - 4|x - 2|
Ta có:
|x - 2| ≥ 0 với mọi x ∈ R
⇒ 4|x - 2| ≥ 0 với mọi x ∈ R
⇒ -4|x - 2| ≤ 0 với mọi x ∈ R
⇒ 10 - 4|x - 2| ≤ 10 với mọi x ∈ R
Vậy GTLN của D là 10 khi x = 2
1. cho x+y = 1 . tìm GTNN của biểu thức C = x2 + y2
2. cho x + 2y =1 . tìm GTNN của biểu thức P = x2 + 2y2
3. cho x + y =1 . tìm GTNN của biểu thức G = 2x2 + y2
4. cho x + y =1 . tìm GTNN của biểu thức H = x2 + 3y2
5. cho 2x + y =1 . tìm GTNN của biểu thức I = 4x2 + 2y2
6. tìm các số thực thõa mãn Pt :
2x2 + 5y2 + 8x - 10y + 13 = 0
Áp dụng Bunyakovsky, ta có :
\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)
=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)
=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)
Mấy cái kia tương tự
Tìm GTNN của:A=lx-3l+lx-2l
Ta đã biết với mọi x,y thuộc Q thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\).
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có : \(A=\left|x-3\right|+\left|x-2\right|=\left|x-3\right|+\left|2-x\right|\ge\left|x-3+2-x\right|=\left|-1\right|=1\)
Vậy \(A\ge1\), A đạt giá trị nhỏ nhất là 1 khi \(2\le x\le3\)
Phải không ta???
Ta có A=|x-3|+|x-2|
= |3-x|+|x-2|
\(\ge\)\(\left|3-x+x-2\right|\)=|1|=1
=> GTNN của A=1 \(\Leftrightarrow\left(3-x\right)\left(x-2\right)\ge0\)
\(\Leftrightarrow2\le x\le3\)
Vậy Min A=1 khi \(2\le x\le3\)
tk mk nha*****CHÚC BẠN HỌC GIỎI*****