có:a^3+b^3=2a^2b^2(4ab-3)
Tính a+b-2ab
Vì a>0; b>0 nên a + b \geq 4ab1+ab4ab1+ab
\Leftrightarrow (a + b)(1 + ab)\geq 4ab
\Leftrightarrow a + b + a^2b+ab^2\geq 4ab
\Leftrightarrow a + b + a^b + ab^2 - 4ab\geq 0
\Leftrightarrow (a^2b - 2ab + b) + (ab^2 - 2ab +a) \geq 0
\Leftrightarrow b(a^2 -2a + 1) + a(b^2 - 2B + 1)\geq 0
\Leftrightarrow b(a-1)^2 + a(b-1)^2\geq 0
\Rightarrow Bất đẳng thức đúng\Rightarrow đpcm.
Chứng minh rằng với mọi số a,b,c ta luôn có :
a) a2 + 5b2 - 4ab + 2a - 6b + 3 > 0
b) a2 + 2b - 2ab + 2a - 4b + 2 >0
B)2a2-2ab-2a+2b
C)2mn+2+2m+2n
D)4a3b+4ab3+8a2+b2-4ab
Phân tích thành nhân tử
Tính giá trị biểu thức
Q= ( x -a / x - b )3 - x2 - 2a + b / x + a -2b với x= a + b /2
P=x + 2a / x - 2a + x + 2b / x - 2b với x = 4ab / a +b
Trong các khai triển hằng đẳng thức sau, khai triển nào sai?
A.(A + B)^2=A^2+2AB+B^2
B.(A + B)^3=A^2+2A^2B+2AB^2+B^3
C.(A - B)^2=A^2-2AB+B^2
D.(A - B)^2=A^3-3A^2B+3AB^2-B^3
Tìm a; b; c biết:
a)\(a^2+2b^2-2ab+2a-4b+2=0\)
b)\(a^2+5b^2-4ab+2a-6b+2=0\)
a, \(\left(a^2+b^2-2ab+2a-2b+1\right)+\left(b^2-2b+1\right)=0\)
=> \(\left(a-b+1\right)^2+\left(b-1\right)^2=0\)
Mà \(\left(a-b+1\right)^2\ge0,\left(b-1\right)^2\ge0\)
=> \(\hept{\begin{cases}a-b+1=0\\b=1\end{cases}\Rightarrow\hept{\begin{cases}a=0\\b=1\end{cases}}}\)
b,Tương tự
\(\left(a-2b+1\right)^2+\left(b-1\right)^2=0\)
=>\(\hept{\begin{cases}a=1\\b=1\end{cases}}\)
Bài 2 Chứng minh hằng đẳng thức
a. (a + b + c) 2 = a 2 + b 2 + c 2 + 2ab + 2ac + 2bc
b. (a + b) 2 + (a − b) 2 = 2a 2 + 2b 2 .
c. (a + b) 2 − (a − b) 2 = 4ab.
a, \(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2c\left(a+b\right)+c^2=a^2+b^2+c^2+2ab+2ac+2bc\)
b, \(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2=2a^2+2b^2\)
c, \(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b-a+b\right)\left(a+b+a-b\right)=2b.2a=4ab\)
\(\left(a+b+c\right)^2=\left[\left(a+b\right)+c\right]^2=\left(a+b\right)^2+2\cdot\left(a+b\right)\cdot c+c^2\\ =a^2+2ab+b^2+2ac+2bc+c^2\\ =a^2+b^2+c^2+2ab+2ac+2bc\)
\(\left(a+b\right)^2+\left(a-b\right)^2=a^2+2ab+b^2+a^2-2ab+b^2\\ 2a^2+2b^2\)
\(\left(a+b\right)^2-\left(a-b\right)^2=\left(a+b+a-b\right)\left(a+b-a+b\right)\\ =2a\cdot2b=4ab\)
a) (a+b+c)2 = (a+b)2 + 2(a+b)c + c2 = a2 + 2ab +b2 + 2ac+ 2bc+ c2
b) (a+b)2 + (a-b)2 = a2+ 2ab+ b2+ a2- 2ab +b2= 2a2 + 2b2
c) (a+b)2- (a-b)2 = a2+ 2ab+ b2- a2+ 2ab- b2 = 4ab
PTĐTTNT:\(3abc+a^2\left(a-b-c\right)+b^2\left(b-a-c\right)+c^2\left(c-b-a\right)-c\left(b-c\right)\left(a-c\right)\)
\(=3abc+a^3-a^2b-a^2c+b^3-b^2a-b^2c+c^3-c^2b-c^2a-\left(abc-bc^2-c^2a+c^3\right)\)
\(=2abc+a^3-a^2b-a^2c+b^3-b^2c-b^2a\)
\(=\left(a^3+a^2b-a^2c\right)-\left(2a^2b+2ab^2-2abc\right)+\left(ab^2+b^3-b^2c\right)\)
\(=a^2\left(a+b-c\right)-2ab\left(a+b-c\right)+b^2\left(a+b-c\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a^2-2ab+b^2\right)\)
\(=\left(a+b-c\right)\left(a-b\right)^2\) nha !
P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.
Trả lời
Ở phần kết quả bạn vẫn chưa thu gọn hết đâu nha
\(=\left(a+b+c\right).\left(a-b\right)^2\)
Mk góp ý thôi mong mọi người đừng có đáp gạch đáp đá nha
Study well
a) Cho a+b=7. Tính giá trị biểu thức: M=(a+b)3+2a2+4ab+2b2
b)Cho a-b=5. Tính giá trị biểu thức: N= (a-b)3-a2+2ab-b2
c) Biết a+b=5và ab=2. Tính (a-b)2
a) ta có : \(M=\left(a+b\right)^3+2a^2+4ab+2b^2\)
\(M=\left(a+b\right)^3+2\left(a^2+2ab+b^2\right)=\left(a+b\right)^3+2\left(a+b\right)^2\)
\(M=\left(7\right)^3+2.\left(7\right)^2=343+98=441\) vậy \(M=441\) khi \(a+b=7\)
b) ta có : \(N=\left(a-b\right)^3-a^2+2ab-b^2\)
\(N=\left(a-b\right)^3-\left(a^2-2ab+b^2\right)=\left(a-b\right)^3-\left(a-b\right)^2\)
\(N=\left(5\right)^3-\left(5\right)^2=125-25=100\) vậy \(N=100\) khi \(a-b=5\)
c) ta có : \(\left(a-b\right)^2=a^2-2ab+b^2=a^2+2ab+b^2-4ab\)
\(=\left(a+b\right)^2-4ab=\left(5\right)^2-4.2=25-8=17\)
vậy \(\left(a-b\right)^2=17\) khi \(a+b=5\) và \(ab=2\)