Giải phương trình: \((x^2-1)(x^2-25)=25x^2\)
Giải phương trình: \((x^2-1)(x^2-25)=25x^2\)
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
Lời giải:
\((x^2-1)(x^2-25)=25x^2\)
\(\Leftrightarrow x^4-26x^2+25=25x^2\)
\(\Leftrightarrow x^4-51x^2+25=0\)
\(\Leftrightarrow a^2-51a+25=0\) (đặt \(a=x^2)\)
\(\Leftrightarrow (a-\frac{51}{2})^2=\frac{2501}{4}\Rightarrow a-\frac{51}{2}=\pm \frac{\sqrt{2501}}{2}\)
\(\Rightarrow a=\frac{51\pm \sqrt{2501}}{2}\)
\(\Rightarrow x=\pm \sqrt{\frac{51\pm \sqrt{2501}}{2}}\)
giải phương trình: \(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)
ĐKXĐ: ...
- Với \(x=0\) không phải nghiệm
- Với \(x\ne0\)
\(\Leftrightarrow\frac{1}{x+\frac{3}{x}+24}-\frac{1}{x+\frac{3}{x}+25}=-1\)
Đặt \(x+\frac{3}{x}+24=t\)
\(\Leftrightarrow\frac{1}{t}-\frac{1}{t+1}=-1\)
\(\Leftrightarrow t+1-t=-t\left(t+1\right)\)
\(\Leftrightarrow t^2+t+1=0\Leftrightarrow\left(t+\frac{1}{2}\right)^2+\frac{3}{4}=0\)
Pt đã cho vô nghiệm
Giải phương trình : \(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)
ĐK : \(\hept{\begin{cases}x^2+24x+3\ne0\\x^2+25x+3\ne0\end{cases}}\)(@@)
Với x = 0 không phải là nghiệm phương trình
Với x khác 0 ta có:
\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)
<=> \(\frac{1}{x+24+\frac{3}{x}}-\frac{1}{x+25+\frac{3}{x}}=-1\)
Đặt: \(x+\frac{3}{x}=t\)
Ta có phương trình ẩn t: \(\frac{1}{t+24}-\frac{1}{t+25}=-1\)(1)
ĐK: \(\hept{\begin{cases}t\ne-24\\t\ne-25\end{cases}}\)
(1) <=> \(\frac{1}{\left(t+24\right)\left(t+25\right)}=-1\)
<=> \(t^2+49t+601=0\) phương trình vô nghiệm.
giải phương trình: \(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\)
cần gấp, help
Để mk giúp cho
\(\frac{x}{x^2+24x+3}-\frac{x}{x^2+25x+3}=-1\) (ĐKXĐ mk ko chắc lắm, chắc x luôn khác 0)
\(\Leftrightarrow\) x(\(\frac{1}{x^2+24x+3}-\frac{1}{x^2+25x+3}\)) = -1
\(\Leftrightarrow\) x(\(\frac{x}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\)) = -1
\(\Leftrightarrow\) \(\frac{x^2}{\left(x^2+24x+3\right)\left(x^2+25x+3\right)}\) = -1
\(\Leftrightarrow\) (x2 + 24x + 3)(x2 + 25x + 3) = -x2
Vì (x2 + 24x + 3)(x2 + 25x + 3) luôn dương với mọi x nên pt vô nghiệm
Vậy S = \(\varnothing\)
Chúc bn học tốt!! (ko bt giờ này gửi cho bn có kịp ko, đây là cách của mk, bn có thể tham khảo :) )
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
thay k=0 vào pt ta được
\(9x^2-25-0^2-2.0x=0\)
=>\(9x^2-25=0\)
=>\(\left(3x-5\right)\left(3x+5\right)=0\)
=>\(3x+5=0=>x=\dfrac{-5}{3}\)
hoặc \(3x-5=0=>x=\dfrac{5}{3}\)
cho phương trình ẩn x: \(9x^2-25-k^2-2kx=0\)
a,Giải phương trình với k=0
b,Tìm các giá trị của k sao cho phương trình nhận x=-1 làm nghiệm số
Thay `k=0` vào pt ta có:
`9x^2-25-0-0=0`
`<=>9x^2=25`
`<=>x^2=25/9`
`<=>x=+-5/3`
`b)x=-1` làm nghiệm nên ta thay `x=-1` vào pt thì pt =0
`=>9.1-25-k^2-2k(-1)=0`
`<=>-16-k^2+2k=0`
`<=>k^2-2k+16=0`
`<=>(k-1)^2+15=0` vô lý
Vậy khong có giá trị của k thỏa mãn đề bài
Giải phương trình sau: x/(x+1)+(x+1)/(x+2)+(x+2)/x=25/6
\(\frac{x}{x+1}+\frac{x+1}{x+2}+\frac{x+2}{x}=\frac{25}{6}\)
<=> 6x2(x + 2) + 6x(x + 1)2 + 6(x + 2)2(x + 1) = 25x(x + 1)(x + 2)
<=> 18x2 + 54x2 + 54x + 24 = 25x3 + 75x2 + 50x
<=> 18x2 + 54x2 + 54x + 24 - 25x2 - 75x2 - 50x = 0
<=> -7x3 - 21x2 + 4x + 24 = 0
<=> (-7x2 - 28x - 24)(x - 1) = 0
vì 7x2 + 28x + 24 khác 0 nên:
<=> x - 1 = 0
<=> x = 0
Giải phương trình: \(\frac{25}{x^2}-\frac{49}{(x-7)^2}=1\)
ĐKXĐ: ...
\(\Leftrightarrow\frac{49}{\left(x-7\right)^2}+1=\frac{25}{x^2}\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+x^2=25\)
\(\Leftrightarrow\frac{49x^2}{\left(x-7\right)^2}+2.\frac{7x}{x-7}.x+x^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{7x}{x-7}+x\right)^2-\frac{14x^2}{x-7}=25\)
\(\Leftrightarrow\left(\frac{x^2}{x-7}\right)^2-\frac{14x^2}{x-7}-25=0\)
Đặt \(\frac{x^2}{x-7}=a\)
\(\Rightarrow a^2-14a-25=0\)
Nghiệm xấu, bạn tự giải tiếp đoạn cuối
Giải phương trình (x^2 - 25/4)^2 = 10x + 1