cho tam giac ABC cân tại A .Một đường thẳng d di động qua A Gọi D là điểm đối xứng của C qua d Đường thẳng BD cắt d tại M .Tìm quỹ tích các điểm D và M
Cho tam giác ABC cân tại A, gọi D là một điểm di động nằm trên đáy BC. đường thẳng vuông góc với BC và đi qua D cắt AB tại E và cắt AC tại F. Vẽ các hình chữ nhật BDEH và FDCK. Chứng minh H và K đối xứng nhau qua A.
Câu 2 : Cho tam giác ABC vuông tại A có AC = 2AB , kẻ đường trung tuyên AM . Gọi D là điểm đổi xứng của A qua M . Gọi I, K lần lượt là trung điểm của các cạnh BD ; AC . Gọi E là điểm đối xứng của M qua K.Đường thẳng AE cắt đường thẳng CD tại F. Chứng minh tứ giác ABIK là hình vuông và ba điểm K, M, I thẳng hàng b. Chứng minh tứ giác AMCE là hình thoi . a. Chứng minh tứ giác ABDC là hình chữ nhật
Cho tam giác ABC vuuong cân tại đỉnh A. Gọi D là trung điểm của cạnh BC. Qua D dựng đường thẳng vuông góc với AB tại M. Lấy điểm N đối xứng với D qua M. Từ giao điểm P của AB và CN, hạ đoạn thẳng PQ vuông góc với BC tại Q. Các tia CP và QM cắt nhau tại E.
a) Chứng minh tứ giác MPDQ nội tiếp một đường tròn.
b) Chứng minh BE vuông góc với CN.
c) Chứng minh tia EC là tia phân giác của góc AEQ
Cho tam giác ABC nhọn có góc A=70 độ và điểm D thuộc cạnh BC. Gọi E là điểm đối xứng với D qua AB, gọi F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB, AC theo thứ tự M ; N.
a) AB cắt ED tại I, DF cát AC tại K.C/m tam giác AEI = tam giac ADI
b) Tính các góc của tam giác AEF
c) Chứng minh rằng DA là tia phân giác của ^MDN
d) Tìm vị trí của điểm D trên cạnh BC để tam giác DMN
có chu vi nhỏ nhất.
a: Ta có: E và D đối xứng nhau qua AB
nên AB là đường trung trực của ED
Suy ra: AB\(\perp\)ED tại I và I là trung điểm của ED
Xét ΔAEI vuông tại I và ΔADI vuông tại I có
AI chung
EI=DI
Do đó: ΔAEI=ΔADI
Cho tam giác ABC cân tại A và D là một điểm thuộc cạnh BC. Kẻ DM song song với AB (M thuộc AC), DN song song với AC (N thuộc AB). Gọi D' là điểm đối xứng của D qua MN. Tìm quỹ tích điểm D' khi điểm D di động trên BC.
Điểm quỹ tích của D' là BC
Điểm quỹ tích của D' là BC
a: Xét tứ giác AMDN có
AM//DN
AN//DM
Do đó: AMDN là hình bình hành
=>Hai đường chéo AD và MN cắt nhau tại trung điểm của mỗi đường
hay A và D đối xứng nhau qua O
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Từ một điểm M tùy ý trên dây BC, kẻ các đường thẳng song song với AC và AB, chúng cắt AB và AC lần lượt tại P và Q. Gọi D là điểm đối xứng của M qua đường thẳng PQ.
Chứng minh: D nằm trên đường tròn (O).
Lời giải:
Ta có:
$PM\parallel AC$ nên $\widehat{PMB}=\widehat{ACB}$
Mà $\widehat{ACB}=\widehat{ABC}=\widehat{PBM}$ do tam giác $ABC$ cân nên $\widehat{PMB}=\widehat{PBM}$
$\Rightarrow \triangle PBM$ cân tại $P$
$\Rightarrow PB=PM$
Mà $PM=PD$ do tính đối xứng
$\Rightarrow PB=PM=PD$ nên $P$ là tâm đường tròn ngoại tiếp $(DBM)$
$\Rightarrow \widehat{BDM}=\frac{1}{2}\widehat{BPM}$ (tính chất góc nt và góc ở tâm cùng chắn 1 cung)
$=\frac{1}{2}\widehat{BAC}$
Tương tự, $Q$ cũng là tâm ngoại tiếp $(DCM)$
$\Rightarrow \widehat{MDC}=\frac{1}{2}\widehat{MQC}=\frac{1}{2}\widehat{BAC}$
Như vậy:
$\widehat{BDC}=\widehat{BDM}+\widehat{MDC}=\widehat{BAC}$
Kéo theo $D\in (ABC)$
Ta có đpcm.
Bài 7: Cho tam giac ABC cân tại A, AM là đường cao. Gọi N là trung điểm của AC. D là điểm đối xứng của M qua N.
a) CMR: Tứ giác ADCM là hình chữ nhật.
b) CMR: Tứ giác ABMD là hình bình hành và BD đi qua trung điểm O của AM.
c) BD cắt AC tại I. CMR: DI= 2/3 OB
a: Xét tứ giác AMCD có
N là trung điểm của AC
N là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
b: Ta có: ΔBAC cân tại A
mà AM là đường cao
nên M là trung điểm của BC
Suy ra: BM=CM
hay BM=AD
Xét tứ giác ABMD có
AD//BM
AD=BM
Do đó: ABMD là hình bình hành
cho tam giác abc vuông cân tại a. trên ab lấy điểm e ,trên tia đối của tia ca lấy điểm f sao cho be=cf. vẽ hình bình hành befd .gọi i là giao điểm của ef và bc . qua e kẻ đường thẳng vuông gics với ab cắt bi tại k
a) chứng minh : ekfc là hình bình hành
b) qua i kẻ đường thẳng vuông góc với af cắt bd tại m. Chứng minh ai=bm
c) chứng minh c đối xứng với d qua mf
d) tìm vị trí của e trên ab để a,i,d thẳng hàng
Cho hình chữ nhật ABCD hai đường chéo AC và BD cắt nhau tại O. Lấy E là điểm bất kì thuộc đoạn OA. Đường thẳng BE cắt AD tại M .Qua D vẽ một đường thẳng song song BM, đường thẳng này cắt BC tại F và AC tại N.
a. Tứ giác BMDF là hình gì? vì sao?
b. Chứng minh tam giác ABC =tam giác ODN.
c. Qua E vẽ một đường thẳng song song BD, đường thẳng này cắt AC tại H ,cắt CD kéo dài tại I. Gọi O là trung điểm IH. Chứng minh OO'// DF
d. Gọi K là điểm đối xứng với D qua A. chứng minh K,B, M thẳng hàng