Hand heart xd D cua ham so y=\(\frac{X-3\sqrt{2-x}}{\sqrt{X+2}}\)
tim tap xac dinh cua ham so
y=\(\sqrt{\frac{3-3X}{-X^2-2X+15}-1}\)
1) Tim tap xac dinh D cua ham so y = \(\sqrt{6-x}+\dfrac{2x+1}{1+\sqrt{x-1}}\)
A. D = R B. D = ( -∞; 6] C. D = (1; +∞ ) D. [1;6]
Lời giải:ĐKXĐ: \(\left\{\begin{matrix} 6-x\geq 0\\ x-1\geq 0\\ 1+\sqrt{x-1}\neq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\leq 6\\ x\geq 1\end{matrix}\right.\) hay $x\in [1;6]$
Đáp án D
cau 1: tinh gia tri cua x thoa man
\(\left(x-3\right)\left(x^2+3x+9\right)+x\left(x+2\sqrt{2}\right)\left(2\sqrt{2}-x\right)=-3\)
cau 2.tinh GTLN cua bieu thuc
\(2x-2x^2+13\)
cau 3. tinh gia tri cua bieu thuc
\(\frac{3^{\left(x+y\right)^2}}{3^{\left(x-y\right)^2}}\)voi xy=\(\frac{1}{2}\)
cau 4. tim GTLN cua
\(-3x^2-6x-4\)
cau 5. cho ham so : f(x)=\(\frac{1}{5x+9}\)
tinh gia tri cua \(f\left(\frac{40}{25}\right)\)
cau 6. cho hinh thang can ABCD . Day nho AB,goc D bang 64 do. tinh so do goc ngoai tai A
1) Tim tat ca cac gia tri thuc cua tham so m de ham so y = \(\sqrt{m-2x}-\sqrt{x+1}\) co tap xac dinh la 1 doan tren truc so
A. m < -2 B. m > 2 C. m > \(\dfrac{-1}{2}\) D. m > -2
1) Gia tri lon nhat cua ham so: y = \(\dfrac{cosx+2sinx+3}{2cosx-sinx+4}\)
A. 0 B. 3-2\(\sqrt{3}\) C. \(2-2\sqrt{2}\) D. -1
1.Tim a de \(N=\frac{6}{M}\in Z\)biet \(M=\frac{a+2\sqrt{a}+1}{\sqrt{a}}\)
2.tim nghiem nguyen to cua pt:\(x^2-2y^3=1\)
3.Cho a, b,c la 3 canh cua tam giac.CM:\(a^2\left(b+c\right)+b^2\left(c+a\right)+c^2\left(a+b\right)\subseteq a^3+b^3+c^3\)
4.ve do thi ham so \(y=\sqrt{x^2-4x+4}-\sqrt{x^2+4x+4}\)dung do thi. tim GTLN,GTNN.
Bai 1 : Tim m de ham do sau xac dinh \(\forall x\in R\)
y=\(\sqrt{sin^4x+cos^4x-2msinxcosx}\)
Bai 2 Tim tap xac dinh cua ham so sau
a) y= \(\sqrt{2+tan^2x-cosx}\)
b) y=\(\sqrt{sin2x-sinx+3}\)
1.
\(\Leftrightarrow f\left(x\right)=sin^4x+cos^4x-2m.sinx.cosx\ge0\) ;\(\forall x\in R\)
\(f\left(x\right)=\left(sin^2x+cos^2x\right)^2-2sin^2x.cos^2x-2m.sinx.cosx\)
\(=-\frac{1}{2}sin^22x-m.sin2x+1\)
Đặt \(sin2x=t\Rightarrow\left|t\right|\le1\)
\(f\left(t\right)=-\frac{1}{2}t^2-mt+1\ge0\) ; \(\forall t\in\left[-1;1\right]\)
\(\Leftrightarrow\min\limits_{\left[-1;1\right]}f\left(t\right)\ge0\)
\(a=-\frac{1}{2}< 0\Rightarrow\min\limits f\left(t\right)\) xảy ra tại 1 trong 2 đầu mút
\(f\left(-1\right)=m+\frac{1}{2}\) ; \(f\left(1\right)=\frac{1}{2}-m\)
TH1: \(\left\{{}\begin{matrix}m+\frac{1}{2}\ge\frac{1}{2}-m\\\frac{1}{2}-m\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\ge0\\m\le\frac{1}{2}\end{matrix}\right.\) \(\Rightarrow0\le m\le\frac{1}{2}\)
TH2: \(\left\{{}\begin{matrix}\frac{1}{2}-m\ge m+\frac{1}{2}\\m+\frac{1}{2}\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\m\ge-\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow-\frac{1}{2}\le m\le\frac{1}{2}\)
2. ĐKXĐ:
a. \(\left\{{}\begin{matrix}cosx\ne0\\2-cosx+tan^2x\ge0\left(luôn-đúng\right)\end{matrix}\right.\)
\(\Rightarrow x\ne\frac{\pi}{2}+k\pi\)
(BPT dưới luôn đúng do \(\left\{{}\begin{matrix}tan^2x\ge0\\2-cosx>0\end{matrix}\right.\) với mọi x)
b. \(sin2x-sinx+3\ge0\)
\(\Leftrightarrow\left(sin2x+2\right)+\left(1-sinx\right)\ge0\)
Do \(\left\{{}\begin{matrix}sin2x\ge-1\\sinx\le1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}sin2x+2>0\\1-sinx\ge0\end{matrix}\right.\)
\(\Rightarrow\) BPT luôn thỏa mãn hay hàm số xác định trên R
1) Gia tri lon nhat cua ham so y = sin2x + cos2x la:
A. \(\dfrac{\sqrt{2}}{2}\) B. 1 C. \(\sqrt{2}\) D. 2
1 cho 3 so thuc duong thoa man x^2010+y^2010+z^2010=3 tim gia tri lon nhat cua x^2+y^2+z^2
2 cho a;b;c duong c/m \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>hoac=3\left(\frac{1}{a+2b}+\frac{1}{b+2c}+\frac{1}{c+2a}\right)\)
3 tim gia tri nho nhat cua \(\sqrt{a^2+ab+b^2}+\sqrt{b^2+bc+c^2}+\sqrt{c^2+ac+a^2}\) voi a+b+c=1
4 cho a;b;c;d va A;B;C;D la cac so duong thoa man \(\frac{a}{A}=\frac{b}{B}=\frac{c}{C}=\frac{d}{D}\)C/ M \(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
5 tim gia tri lon nhat cua \(\frac{yz\sqrt{x-1}+xz\sqrt{y-2}+xy\sqrt{z-3}}{xyz}\)
6 phan tich da thuc thanh nhan tu \(y-5x\sqrt{y}+6x^2\)
7 cho x;y;z>0 xy+yz+xz=1 tinh \(x\sqrt{\frac{\left(1+y^2\right)\left(1+z^2\right)}{1+x^2}}+y\sqrt{\frac{\left(1+x^2\right)\left(1+z^2\right)}{1+y^2}}+z\sqrt{\frac{\left(1+x^2\right)\left(1+y^2\right)}{1+z^2}}\)
8 cho a;b;c >0 c/m \(\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}
pn oi nhieu the nay ai ma giai cho het dc
bài lớp mấy mà nhìn ghê quá zật bạn..................Nhìu quá