Cho phương trình:\(x^2\)+mx-49=0.Chứng minh:
\(\left|x_1-x_2\right|\ge\) 14
cho phương trình \(x^2+mx+n-3=0\)
a, cho n = 0, chứng minh phương trình luôn có nghiệm với mọi m
b,tìm m và n để 2 nghiệm \(x_1;x_2\) của phương trình (i) thoả mãn \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\)
\(\Delta=m^2+12>0\) ; \(\forall m\)
\(\Rightarrow\) Khi \(n=0\) thì pt có nghiệm với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-m\\x_1x_2=n-3\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=1\\x_1^2-x_2^2=7\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\\left(x_1+x_2\right)\left(x_1-x_2\right)=7\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_1-x_2=1\\x_1+x_2=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=4\\x_2=3\end{matrix}\right.\)
Thế vào hệ thức Viet: \(\left\{{}\begin{matrix}4+3=-m\\4.3=n-3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m=-7\\n=15\end{matrix}\right.\)
Cho phương trình x2-mx-1=0
a) chứng minh phương trình có 2 nghiệm trái dấu
b)gọi x1,x2 là nghiệm của phương trình. Tính giá trị P= \(\dfrac{\left(x_1\right)^2+x_1-1}{x_1}-\dfrac{\left(x_2\right)^2+x_2-1}{x_2}\)
a)Có ac=-1<0
=>pt luôn có hai nghiệm trái dấu
b)Do x1;x2 là hai nghiệm của pt
=> \(\left\{{}\begin{matrix}x_1^2-mx_1-1=0\\x_2^2-mx_2-1=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x_1^2-1=mx_1\\x_2^2-1=mx_2\end{matrix}\right.\)
=>\(P=\dfrac{mx_1+x_1}{x_1}-\dfrac{mx_2+x_2}{x_2}\)\(=m+1-\left(m+1\right)=0\)
Cho phương trình \(x^2-mx+2=0\) tìm m để phương trình có 2 nghiệm phân biệt để biểu thức \(\left(x_1+x_2\right)^4-17\left(x_1+x_2\right)^2x_1^2x_2^2-6\left(x_1+x_2\right)x_1^3x_2^3\)đạt giá trị nhỏ nhất
Cho phương trình:
\(mx^2-2\left(m-1\right)x+3\left(m-2\right)=0.\)
Biết \(x_1;x_2\) là 2 nghiệm của phương trình. Tìm \(m\) sao cho \(x_1+2x_2=1\).
cho phương trình :
\(x^2-mx-3=0\)
a.giải phương trình khi m = -2
b.tìm m để phương trình có 1 nghiệm là 3.Tìm nghiệm còn lại.
c.tìm m để phương trình có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\left(x_1+5\right).\left(x_2+5\right)=2022\)
a, bạn tự làm
b, Thay x = 3 vào pt trên ta được
\(9-3m-3=0\Leftrightarrow6-3m=0\Leftrightarrow m=2\)
Thay m = 2 vào ta được \(x^2-2x-3=0\)
Ta có a - b + c = 1 + 2 - 3 = 0
vậy pt có 2 nghiệm x = -1 ; x = 3
c, \(\Delta=m^2-4\left(-3\right)=m^2+12>0\)
vậy pt luôn có 2 nghiệm pb
\(x_1x_2+5\left(x_1+x_2\right)-1997=0\)
\(\Rightarrow-3+5m-1997=0\Leftrightarrow5m-2000=0\Leftrightarrow m=400\)
bài 1:cho phương trình \(x^2-mx+m-1=0\)
a,gọi \(x_1,x_2\)là hai nghiệm của phương trình,tìm GTLN,GTNN của P=\(\frac{2x_1x_2+3}{x_{1^2}+x_{2^2+2\left(x_1x_2+1\right)}}\)
bài 2: cho phương trình \(x^2-2\left(2m+1\right)x+2m-4=0\)
tìm m để phương trình có hai nghiệm \(x_1,x_2\)và chứng minh biểu thức m=\(x_1\left(1-x_2\right)+x_2\left(1-x_1\right)\) là một hằng số
Cho phương trình \(x^2-2\left(m+1\right)x+m^2-3=0\)
Tìm m sao cho phương trình đã cho có 2 nghiệm phân biệt \(x_1;x_2\) thỏa mãn hệ thức \(x_1^2+x_2^2+3x_1x_2=14\)
\(\Delta'=\left(m+1\right)^2-\left(m^2-3\right)=2m+4>0\Rightarrow m>-2\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2-3\end{matrix}\right.\)
\(x_1^2+x_2^2+3x_1x_2=14\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=14\)
\(\Leftrightarrow4\left(m+1\right)^2+m^2-3=14\)
\(\Leftrightarrow5m^2+8m-13=0\Rightarrow\left[{}\begin{matrix}m=1\\m=-\dfrac{13}{5}< -2\left(loại\right)\end{matrix}\right.\)
Để pt có 2 nghiệm phân biệt thì Δ'>0
Δ'= [-(m+1)]2-1*(m2-3)>0
= m2+2m+1-m2+3>0
= 2m+4 >0
↔ 2m>-4
↔ m>-2
áp dụng hệ thức vi-ét ta có :
[x1+x2=2(m+1)=2m+2
[x1x2=m2-3
ta lại có: x12+x22+3x1x2 =14
<=> (x1+x2)2+x1x2=14
<=> (2m+2)2 +(m2-3)=14
<=> 4m2+8m+4+m2-3-14=0
<=> 5m2+8m-17=0
Δ'=42-5(-17)
=101
Cho phương trình: \(x^2-\left(m-1\right)x-m^2+m-1=0\)0 (1)
Chứng minh phương trình (1) luôn có nghiệm \(\forall m\). Giả sử 2 nghiệm là \(x_1,x_2\left(x_1< x_2\right)\),khi đó tìm m để \(\left|x_2\right|-\left|x_1\right|=2\)
ko biết làm
\(\Delta=\left[-\left(m-1\right)\right]^2-4.1.\left(m-1\right)\)
\(=m^2-2m+1-4m+4\)
\(=m^2-6m+4+1\)
\(=\left(3-m\right)^2+1>0\)với mọi m
Áp dụng hệ thức Vi ét , ta có :
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}=m-1\\x_1x_2=\frac{c}{a}=m-1\end{cases}\left(1\right)}\)
Theo bài ra ta có :
\(\left|x_2\right|-\left|x_1\right|=2\)
\(\Leftrightarrow\left(x_2-x_1\right)^2=2^2\)
\(\Leftrightarrow x_2^2+x_1^2-2x_1x_2=4\)
\(\Leftrightarrow\left(x_1+x_2\right)-2x_1x_2-2x_1x_2=4\)(2)
Thay (1) vào (2) ta được :
\(\left(m-1\right)-2\left(m-1\right)-2\left(m-1\right)=4\)
\(\Leftrightarrow m-1-2m+2-2m+2=4\)
tự giải tiếp =))
câu 1 cho phương trình bậc 2 có ẩn x:\(x^2-2mx+2m-1=0\)
1)chứng tỏ phương trình có nghiệm \(x_1;x_2\) với mọi m
2)chứng minh\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\)
a)chứng minh \(A=8m^2-18m+9\)
b)tìm m để A đạt giá trị nhỏ nhất
1, Ta có: \(\Delta'=\left(-m\right)^2-\left(2m-1\right)=m^2-2m+1=\left(m-1\right)^2\ge0\)
Suy ra pt luôn có 2 nghiệm
2, Theo Vi-ét:\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\)
\(A=\left(x_1^2+x_2^2\right)-5x_1x_2\\ =\left(x_1+x_2\right)^2-7x_1x_2\\ =\left(2m\right)^2-7\left(2m-1\right)\\ =4m^2-14m+7\)
Đề sai r bạn
\(b,4m^2-14m+7\\ =4\left(m^2-\dfrac{7}{2}m+\dfrac{7}{4}\right)\\ =4\left(m^2-2.\dfrac{7}{4}m+\dfrac{49}{16}-\dfrac{21}{16}\right)\\ =4\left(m-\dfrac{7}{4}\right)^2-\dfrac{21}{4}\ge-\dfrac{21}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow m=\dfrac{7}{4}\)
Vậy m=`7/4` thì A đạt GTNN
1: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-1\right)\)
\(=4m^2-8m+4=\left(2m-2\right)^2>=0\forall m\)
Do đó: Phương trình luôn có hai nghiệm
2: \(A=\left(x_1+x_2\right)^2-7x_1x_2\)
\(=\left(-2m\right)^2-7\left(2m-1\right)\)
\(=4m^2-14m+7\)