Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
TH
Xem chi tiết
Minh Triều
13 tháng 1 2016 lúc 5:21

 

D = 1.2 + 2.3+ 3.4 +...+ 99.100

=>3D=1.2.3+2.3.3+3.4.3+...+99.100.3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+....+99.100.(101-98)

=1.2.3-0.1.2+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100

=99.100.101-0.1.2

=99.100.101

=999900

=>D=999900:3=333300

 

Dn = 1.2 + 2.3 + 3.4 +...+ n (n +1)

=>3Dn=1.2.3+2.3.3+3.4.3+...+n(n+1).3

=1.2.(3-0)+2.3.(4-1)+3.4.(5-2)+...+n.(n+1).[(n+2)-(n-1)]

=1.2.3-0.1.2+2.3.4-1.2.3+2.3.4-2.3.4+....+n(n+1)(n+2)-(n-1)n(n+1)

=n.(n+1).(n+2)-0.1.2

=n.(n+1)(n+2)

=>Dn=n.(n+1)(n+2):3

 =>điều cần chứng minh

Phương Mĩ Linh
Xem chi tiết
hoàng thảo hiền
11 tháng 9 2015 lúc 16:14

cau hỏi tương tự ko có mà!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Vũ Đăng Khôi
23 tháng 1 2022 lúc 10:53

3C=1.2.3+2.3.(4-1)+3.4.(5-2)+...+2014.2015.(2016-2013)

3C=2014.2015.2016

C=2014.2015.2016:3

Khách vãng lai đã xóa
Trần Thị Hương
Xem chi tiết
Trang Thị Anh :)
8 tháng 10 2019 lúc 21:21

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3 

3A = 1.2.( 3 + 0 ) + 2.3.( 4 - 1 ) + .. + 99.100.( 101 - 98 ) 

3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100 

3A = 99.100.101 

A = ( 99.100.101 ) : 3 = 333300 

Vậy A = 333300

dương danh nhật sơn
8 tháng 10 2019 lúc 21:27

mk làm câu b

A=1.2+2.3+3.4+.......+99.100

3.A =3.1.2+2.3.3+3.4.3+............+99.100.3

3.A= 1.2.3+2.3.(4-1)+3.4.(5-2) +..........+99.100.(101-98)

3.A=1.2.3+2.3.4-1.2.3 +3.4.5-2.3.4+............+99.100.101-98.99.100

vì cứ +2.3.4  lại -2.3.4 cứ như thế

3.A=99.100.101

A=(99.100.101):3

A=333300

chúc bạn may mắn trong học tập 

mk vừa học xong

Đào Duy Khánh
Xem chi tiết
Edogawa Conan
21 tháng 7 2017 lúc 8:41

S=1.2+2.3+3.4+.............+n(n+1)
=1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
=(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3

kim anh
Xem chi tiết
๖ۣۜNɦσƙ ๖ۣۜTì
14 tháng 7 2019 lúc 8:59

A =1.2+2.3+3.4+.............+n(n+1)
   =1(1+1) + 2(2+1) + 3(3+1) +...+n(n+1)
   =(1^2 + 2^2 + 3^2 +...+ n^2) + (1 + 2 + 3 + ...+ n)
Ta có các công thức:
1^2 + 2^2 + 3^2 +...+ n^2 = n(n+1)(2n+1)/6
1 + 2 + 3 + ...+ n = n(n+1)/2
Thay vào ta có:
S = n(n+1)(2n+1)/6 + n(n+1)/2
=n(n+1)/2[(2n+1)/3 + 1]
=n(n+1)(n+2)/3

\(A=1.2+2.3+3.4+...+n\left(n+1\right)\)

\(3A=1.2.3+2.3.4+3.4.3+..+3n\left(n+1\right)\)

\(=1.2.3+2.3\left(4-1\right)+3.4\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

\(=n\left(n+1\right)\left(n+2\right)\)

\(=\frac{n\left(n+1\right)\left(n+2\right)}{3}\)

ko chắc vì mk làm qua lâu òi hc tốt ~~:B~~

Xyz OLM
14 tháng 7 2019 lúc 9:00

A = 1.2 + 2.3 + 3.4 + ... + n.(n + 1)

3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + n.(n + 1).3

     = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n.(n + 1). [(n + 2) - (n - 1)]

     = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n . (n + 1) . (n + 2) - (n - 1) . n . (n + 1)

     = n . (n + 1) . (n + 2)

=> A = \(\frac{n.\left(n+1\right).\left(n+2\right)}{3}\)

Đỗ Đức Hà
Xem chi tiết
Nguyên Khôi
22 tháng 11 2021 lúc 10:45

Tham khảo:

https://olm.vn/hoi-dap/detail/7327860996.html

Trên con đường thành côn...
22 tháng 11 2021 lúc 10:47

Ta có:

\(3A=1.2.3+2.3.3+3.4.3+....+n\left(n+1\right).3\)

\(\Leftrightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+n\left(n+1\right)\left[\left(n+2\right)-\left(n-1\right)\right]\)

   \(\Leftrightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n\left(n+1\right)\left(n+2\right)-\left(n-1\right)n\left(n+1\right)\)

\(\Leftrightarrow3A=n\left(n+1\right)\left(n+2\right)\)

\(\Rightarrow A=\dfrac{n\left(n+1\right)\left(n+2\right)}{3}\)

 

BÍCH THẢO
Xem chi tiết
👾thuii
30 tháng 9 2023 lúc 16:35
Bài 1: Tính A = 1.2 + 2.3 + 3.4 +...+n. (n+1)Giai: 

=> Ta thấy rằng mỗi số hạng trong dãu số trên đều là tích của hai số tự nhiên liên tiếp, khi đó: 

Gọi a1 = 1.2  → 3a1 = 1.2.3 → 3a1 = 1.2.3 - 0.1.2

Tương tự:

a2 = 2.3 → 3a2 = 2.3.3 → 3a2 = 2.3.4 - 1.2.3

a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4  ....

a(n - 1) = (n - 1).n → 3a(n - 1) = 3(n - 1)n → 3a(n - 1) = (n - 1).n.(n + 1) - (n - 2).(n - 1).n

an = n.(n - 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng vế với vế của các đẳng thức trên ta được: 

3(a1 + a2 + a3 +...+ an) = n(n + 1)(n + 2) 

-> A = n.(n+1) .( n+2) / 3

 

 
Akai Haruma
30 tháng 9 2023 lúc 16:46

Lời giải:

$A=1.2+2.3+3.4+...+n(n+1)$

$3A=1.2.3+2.3.3+3.4.3+....+n(n+1).3$

$3A=1.2.3+2.3(4-1)+3.4(5-2)+....+n(n+1)[(n+2)-(n-1)]$

$3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+n(n+1)(n+2)-(n-1)n(n+1)$

$=[1.2.3+2.3.4+3.4.5+....+n(n+1)(n+2)]-[1.2.3+2.3.4+....+(n-1)n(n+1)]$
$=n(n+1)(n+2)$

$\Rightarrow A=\frac{n(n+1)(n+2)}{3}$

nguyển văn hải
Xem chi tiết
nguyển văn hải
7 tháng 7 2017 lúc 19:57

Cách 1:

Ta thấy mỗi số hạng của tổng trên là tích của hai số tự nhên liên tiếp, khi đó: 

Gọi a1 = 1.2 → 3a1 = 1.2.3 → 3a= 1.2.3 - 0.1.2
      a2 = 2.3 → 3a2 = 2.3.3 → 3a= 2.3.4 - 1.2.3
      a3 = 3.4 → 3a3 = 3.3.4 → 3a3 = 3.4.5 - 2.3.4
      …………………..
      an-1 = (n - 1)n → 3an-1 =3(n - 1)n → 3an-1 = (n - 1)n(n + 1) - (n - 2)(n - 1)n
      an = n(n + 1) → 3an = 3n(n + 1) → 3an = n(n + 1)(n + 2) - (n - 1)n(n + 1)

Cộng từng vế của các đẳng thức trên ta có:

3(a1 + a2 + … + an) = n(n + 1)(n + 2)

Cách 2: Ta có

3A = 1.2.3 + 2.3.3 + … + n(n + 1).3 = 1.2.(3 - 0) + 2.3.(3 - 1) + … + n(n + 1)[(n - 2) - (n - 1)] = 1.2.3 - 1.2.0 + 2.3.3 - 1.2.3 + … + n(n + 1)(n + 2) - (n - 1)n(n + 1) = n(n + 1)(n + 2) 

* Tổng quát hoá ta có:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = 3k(k + 1). Trong đó k = 1; 2; 3; …

Ta dễ dàng chứng minh công thức trên như sau:

k(k + 1)(k + 2) - (k - 1)k(k + 1) = k(k + 1)[(k + 2) - (k - 1)] = 3k(k + 1)

Nguyễn Việt Anh
Xem chi tiết
Nguyễn Ngọc Quý
22 tháng 11 2015 lúc 14:03

a) Đặt A = 1.2 + 2.3 + ........ + (n-1)n

3A = 1.2.3 + 2.3.(4-1) + .... + (n-1)n[(n+1)-(n-2)]

3A = 1.2.3 + 2.3.4 - 1.2.3 + .... + (n-1)n(n+1) - (n-2)(n-1)n

3A = (1.2.3 - 1.2..3) + ... + (n-1)n(n+1)

A = \(\frac{\left(n-1\right)n\left(n+1\right)}{3}\)

b) Đặt B = 12 + 22 + ..... + n2

B = 1(2 - 1) + 2(3 - 1) + ..... + n[(n + 1) - 1]

B = 1.2 + 2.3 + .......... + n(n + 1) - (1+2+3+....+n)

B = A -  \(\frac{n\left(n+1\right)}{2}\)