Cho a,b là các số thực thỏa mãn a2+b2=4. Tìm GTLN của biểu thức
P=a4+b4+4ab
Xét các số thực dương a, thỏa mãn a+b=1 . Tìm giá trị nhỏ nhất của biểu thức P=a^2 +b
\(a+b=1\Leftrightarrow b=1-a\\ \Leftrightarrow P=a^2+1-a=\left(a-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\\ P_{min}=\dfrac{3}{4}\Leftrightarrow a=\dfrac{1}{2}\Leftrightarrow b=\dfrac{1}{2}\)
Cho các số thực x, y thỏa mãn x + y = 2 x - 3 + y + 3 . Giá trị nhỏ nhất của biểu thức P = 4 ( x 2 + y 2 ) + 15 x y là:
A. minP = -83
B. minP = -63
C. minP = -80
D. minP = -91
Bài 1:Cho a,b là các số nguyên tố thỏa mãn: (a-1) chia hết cho b và (b3 - 1) chia hết cho a.Chứng minh: a= b2+b+1
Bài 2:Cho x,y là hai số thực thỏa mãn:
x3 + y3 +3x2 + 4x + 3y2 +4y +4=0.Tìm giá trị lớn nhất của biểu thức P=1/x+1/y
1) Vì a, b là số nguyên tố và a - 1 chia hết cho b nên a là số nguyên tố lẻ >=3 và b =2( vì a -1 chẵn)
b3 - 1 = 7 chia hết cho a, nên a =7. Vậy a = b2 + b + 1( 7 = 22 + 2 + 1)
bài 1: Cho các số thực a, b, c thỏa mãn a+b−2c=0 và a2+b2−ca−cb=0.Chứng minh rằng a = b = c.
bài 2: Giả sử a, b là hai số thực phân biệt thỏa mãn a2+4a=b2+4b=1.
a) Chứng minh rằng a + b = −4.
b) Chứng minh rằng a3 + b3 = −76.
c) Chứng minh rằng a4 + b4 = 322.
Bài 1:
Ta có: a + b - 2c = 0
⇒ a = 2c − b thay vào a2 + b2 + ab - 3c2 = 0 ta có:
(2c − b)2 + b2 + (2c − b).b − 3c2 = 0
⇔ 4c2 − 4bc + b2 + b2 + 2bc − b2 − 3c2 = 0
⇔ b2 − 2bc + c2 = 0
⇔ (b − c)2 = 0
⇔ b − c = 0
⇔ b = c
⇒ a + c − 2c = 0
⇔ a − c = 0
⇔ a = c
⇒ a = b = c
Vậy a = b = c
cho x,y,z là các số thực thỏa mãn x+y+z =1 .Tìm GTNN của biểu thức
P= \(\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}\)
*số thực dương
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P=\frac{1}{16x}+\frac{1}{4y}+\frac{1}{z}=\frac{\frac{1}{16}}{x}+\frac{\frac{1}{4}}{y}+\frac{1}{z}\ge\frac{\left(\frac{1}{4}+\frac{1}{2}+1\right)^2}{x+y+z}=\frac{\frac{49}{16}}{1}=\frac{49}{16}\)
Đẳng thức xảy ra <=> \(\frac{\frac{1}{4}}{x}=\frac{\frac{1}{2}}{y}=\frac{1}{z}=\frac{\frac{1}{4}+\frac{1}{2}+1}{x+y+z}=\frac{\frac{7}{4}}{1}=\frac{7}{4}\Rightarrow\hept{\begin{cases}x=\frac{1}{7}\\y=\frac{2}{7}\\z=\frac{4}{7}\end{cases}}\)
Vậy ...
Số phức z = a + bi có phần thực, phần ảo là các số nguyên và thỏa mãn: z 3 = 2 + 11 i . Giá trị biểu thức T = a + b là
A. 2
B. 3
C. 4
D. 5
Cho a,b,c là các số không âm thỏa mãn:
2a+b+3c=6
3a+4b-3c=4
Tìm GTNN của biểu thức : A = 2a+3b-4c?
🐱
Tìm giá trị nhỏ nhất của S a b c a 2b c Giải: Dự đoán a=2,b=3,c=4 12 18 ... 18 16 4 S 4a 4b 4c a 2b 3c 3a 2b c ... 3 xy yz zx x2 y2 z2 Bài 11 Cho x, y là hai số thực không âm thay đổi. ..... 2 2 Bài 36 Cho a,b,c là các số thuộc 1; 2 thỏa mãn điều kiện a2+b2+c2 = 6.
Cho \(a,b,c\) là các số thực dương thoả mãn điều kiện: \(a+b+c=3\)
Tìm GTLN của biểu thức: \(P=\frac{bc}{\sqrt{3a+bc}}+\frac{ca}{\sqrt{3b+ca}}+\frac{ab}{\sqrt{3c+ab}}\)
Ta có : \(\frac{bc}{\sqrt{3a+bc}}=\frac{bc}{\sqrt{\left(a+b+c\right)a+bc}}=\frac{bc}{\sqrt{a^2+ab+ac+bc}}=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Áp dụng bđt Cauchy , ta có : \(\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}\le\frac{bc}{2}\left(\frac{1}{a+b}+\frac{1}{a+c}\right)\)
Tương tự : \(\frac{ac}{\sqrt{3b+ac}}=\frac{ac}{\sqrt{\left(a+b\right)\left(b+c\right)}}\le\frac{ac}{2}\left(\frac{1}{a+b}+\frac{1}{b+c}\right)\); \(\frac{ab}{\sqrt{3c+ab}}=\frac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\le\frac{ab}{2}\left(\frac{1}{a+c}+\frac{1}{b+c}\right)\)
\(\Rightarrow P=\frac{bc}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{ac}{\sqrt{\left(b+a\right)\left(b+c\right)}}+\frac{ab}{\sqrt{\left(a+c\right)\left(c+b\right)}}\)
\(\le\frac{1}{2}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{bc}{a+b}+\frac{bc}{a+c}+\frac{ac}{a+b}+\frac{ac}{b+c}\right)\)
\(\Rightarrow P\le\frac{1}{2}\left(\frac{ab+bc}{a+c}+\frac{ab+ac}{b+c}+\frac{bc+ac}{a+b}\right)=\frac{1}{2}\left(a+b+c\right)=\frac{3}{2}\)
Suy ra : Max P \(=\frac{3}{2}\Leftrightarrow a=b=c=1\)
đây nhé Câu hỏi của Steffy Han - Toán lớp 8 | Học trực tuyến
link bị lỗi rùi để mk lm lại
\(\frac{ab}{\sqrt{3c+ab}}\le\frac{ab}{\sqrt{ab+\left(a+b+c\right)c}}=\frac{\sqrt{ab}}{\sqrt{b+c}}\cdot\frac{\sqrt{ab}}{\sqrt{c+a}}\)\(=\sqrt{\frac{ab}{b+c}\cdot\frac{ab}{c+a}}\le\frac{1}{4}\left(\frac{2ab}{b+c}+\frac{2ab}{c+a}\right)\)
Tương tự cho \(\frac{bc}{\sqrt{3a+bc}}\)và\(\frac{ca}{\sqrt{3b+ca}}\)rồi cộng lại theo vế
\(P\le\frac{1}{4}\left(2a+2b+2c\right)\le\frac{3}{2}\)
\(Max_P=\frac{3}{2}\Leftrightarrow a=b=c=1\)
Cho x, y là các số thực thỏa mãn: \(\sqrt{x-1}-y\sqrt{y}=\sqrt{y-1}-x\sqrt{x}\) . Tìm giá trị nhỏ nhất của biểu thức: \(S=x^2+3xy-2y^2-4y+5\)
Các cậu giúp hộ tớ ạ~