Cho Tam giác ABC vuông tại A có AB=9cm, AC=12cm , đường cao AH a) chứng minh: tam giác abh ~ tam giác cba b) tính BC;AH c) Tia phân giác góc B cắt AC tại D.Chứng minh: AD.AC=AH.DC
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc B chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)
AH=9*12/15=7,2cm
c: AD là phân giác
=>AD/DC=BA/BC=AH/AC
=>AD*AC=AH*DC
Bài 3: Cho tam giác ABC vuông tại A, (AB > AC), đường cao AH.
a) Chứng minh: ∆ABH ∆CBA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại E, tia phân giác của góc AHC cắt AC tại D. Chứng minh: AD = AE
Bài 4: Cho tam giác ABC vuông tại A, (AB < AC), đường cao AH.
a) Chứng minh: ∆ACH ∆BCA;
b) Chứng minh: AH2 = BH.CH;
c) Tia phân giác của góc AHB cắt AB tại D, tia phân giác của góc AHC cắt AC tại E. Chứng minh: AD = AE
4:
a: Xét ΔACH vuông tại H và ΔBCA vuông tại A có
góc ACH chung
=>ΔACH đồng dạng với ΔBCA
b: Xét ΔHAB vuông tại H và ΔHCA vuông tại H có
góc HAB=góc HCA
=>ΔHAB đồng dạng với ΔHCA
=>HA/HC=HB/HA
=>HA^2=HB*HC
c: góc EHD=góc EHA+góc DHA
=1/2*góc AHB+1/2*góc AHC=90 độ
góc EAD+góc EHD=180 độ
=>EADH nội tiếp
=>góc AED=góc AHD và góc ADE=góc AHE
mà góc AHD=góc AHE=45 độ
nên góc AED=góc ADE
=>AD=AE
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC Tính AB,AC đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
cho △ ABC ⊥ A, đường cao AH (H thuộc BC). Có △ABH đồng dạng △CBA, AB2 = BH.BC. Có △ABH đồng dạng △CAH ⇒AH2 = BH.CH
a) BD là tia phân giác của ∠ABC (D thuộc AC); Kẻ CI vuông góc BD (I thuộc BD). Chứng minh BD2= AB.BC - AD.CD
b) CI kéo dài cắt BA tại M; MD cắt BC tại K. Chứng minh \(\dfrac{DK}{\text{MK}}\)+\(\dfrac{DI}{\text{BI}}\)+\(\dfrac{DA}{\text{CA}}\)=1
Cho tam giác ABC vuông tại A, AB<AC, và có đường cao AH (H thuộc BC).
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Dường phân giác của góc ABC cắt AC tại K và cắt AH tại M. Chứng Minh BA.BM = BH.BK và BA.BK = BC.BM
c) Vẽ KD vuông góc với BC tại D. Chứng minh BA/DH = BC/DC
d) Gọi T là điểm đối xứng với H qua M và V là điểm đối xứng với D qua K. Chứng minh ba điểm B, T, V thẳng hàng
Bạn nào biết giúp mình với nhé:)))
Cho tam giác ABC vuông tại A có đường cao AH .Kẻ HD vuông góc AC tại D a) Chứng minh: Tam giác ABH đồng dạng tam giác CBA, tam giác DAH đồng dạng tam giác HAC b) Chứng minh AD.AC=BH.HC c) Gọi O là trung điểm AB, OC cắt HD tại I Chứng minh :HI=ID d) Gọi K là giao điểm của AH và OC. Chứng minh B,K,D thẳng hàng
Cho tam giác ABC vuông tại A. Kẻ đường cao AH. Biết BH=4cm,CH=9cm
Chứng minh tam giác ABH đồng dạng với tam giác CBA từ đó suy ra AB^2=BH.BC
Tính AB,AC
đường phân giác BD cắt AH tại E(D thuộc AC) . Tính SEBH/SDBA và chứng minh EA/EH=DC/DA
Cho tam giác ABC nhọn, kẻ đường cao AH (H thuộc cạnh BC). Tia phân giác của góc ABH cắt AH tại I. Qua A kẻ đường thẳng vuông góc với AB, cắt tia BI tại K. Kẻ KD vuông góc với BC (D thuộc BC). a) Chứng minh rằng: tam giác AKD cân. b) Chứng minh rằng: BK vuông gióc với AD . Từ đó suy ra I là trực tâm của tam giác ABD. c) Trên tia đối của tia HA lấy điểm E sao cho HE = HI. Chứng minh rằng AKDE là hình thang cân. d) Nếu biết rằng ADE 3ADK , tính số đo ABC.
Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm, đường cao AH, phân giác BD cắt nhau tại I. a) Chứng minh: ABH đồng dạng với CBA. b) Tính BC, AH, AD và DC. c) Chứng minh: AB.BI = BD.HB. d) Tính diện tích BHI.
a: Xét ΔABH vuông tại H và ΔCBA vuông tại A có
góc ABH chung
=>ΔABH đồng dạng với ΔCBA
b: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)
AH=6*8/10=4,8cm
BD là phân giác
=>AD/AB=CD/BC
=>AD/3=CD/5=8/8=1
=>AD=3cm; CD=5cm
c: Xét ΔBHI vuông tại H và ΔBAD vuông tại A có
góc HBI=góc ABD
=>ΔBHI đồng dạng với ΔBAD
=>BH/BA=BI/BD
=>BH*BD=BA*BI