giải pt y=\(\dfrac{2}{cos3x+1}\)
Giải pt:
1. (\(\sqrt{9-x^2}\)-2x).(x\(^3\)+x\(^2\)-12x+10)=0 2. cos3x+2cos\(^2\)(x+\(\dfrac{\pi}{6}\))=1
Bài 2 Tìm tập xác định của hàm số y = \(\dfrac{\sqrt{1-sin2x}}{cos3x}\)
Bài 3 : cho pt (cosx+1)(cos-2x-mcosx)=msin\(^2\) x
tìm m để pt có đúng 2 nghiệm phân biệt thuộc \([0;\dfrac{2\pi}{3}\)\(]\)
bài 4: cho hàm số y= x\(^3\)-2mx\(^2\)+(7m-8)x-5m=10 có đồ thị (C\(_m\)) và đường thẳng d: y=x+m. tìm m để d cắt ( C\(_m\)) tai ba điểm phân biêt
giúp e với mn ơiiii
Giải pt: \(\sin3x+\cos3x-2\sqrt{2}\cos\left(x+\dfrac{\pi}{4}\right)+1=0\)
\(\Leftrightarrow3\sin x-4\sin^3x+4\cos^3x-3\cos x-2\cos x+2\sin x+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\cos x.\sin x\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)\(\Leftrightarrow4\left[\left(\cos x-\sin x\right)^3+3\dfrac{\left(\cos x-\sin x\right)^2-1}{2}\left(\cos x-\sin x\right)\right]-5\left(\cos x-\sin x\right)+1=0\)Đặt cosx-sinx=a. Thay vào giải pt ta tìm được: a=1
<=> cosx-sinx=1
\(\Leftrightarrow\cos x.\sin\dfrac{\pi}{4}-\sin x.\cos\dfrac{\pi}{4}=\dfrac{1}{\sqrt{2}}\)
\(\Leftrightarrow\sin\left(\dfrac{\pi}{4}-x\right)=\sin\dfrac{\pi}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{\pi}{4}-x=\dfrac{\pi}{4}-2k\pi\Rightarrow x=2k\pi\\\dfrac{\pi}{4}-x=\pi-\dfrac{\pi}{4}-2k\pi\Rightarrow x=-\dfrac{\pi}{2}+2k\pi\end{matrix}\right.\)
Giải pt : \(2cos\left(x+\dfrac{\pi}{6}\right)=sin3x-cos3x\)
Đặt \(x+\dfrac{\pi}{6}=t\Rightarrow x=t-\dfrac{\pi}{6}\Rightarrow3x=3t-\dfrac{\pi}{2}\)
\(2cost=sin\left(3t-\dfrac{\pi}{2}\right)-cos\left(3t-\dfrac{\pi}{2}\right)\)
\(\Leftrightarrow2cost=-cos3t-sin3t\)
\(\Leftrightarrow2cost=3cost-4cos^3t+4sin^3t-3sint\)
\(\Leftrightarrow4sin^3t-3sint+cost-4cos^3t=0\)
\(cost=0\) không phải nghiệm
\(\Rightarrow4tan^3t-3tant\left(1+tan^2t\right)+1+tan^2t-4=0\)
\(\Leftrightarrow tan^3t+tan^2t-3tant-3=0\)
\(\Leftrightarrow\left(tant+1\right)\left(tan^2t-3\right)=0\)
\(\Leftrightarrow...\)
Giai pt
\(5sinx-2=3\left(1-sinx\right)tan^2x\)
\(2.cos2x.cosx=1+cos2x+cos3x\)
\(cos2x+cosx=4sin^2\left(\dfrac{x}{2}\right)-1\)
Bạn tham khảo pt 1 hộ mình nha. Chúc bạn học tốt~
Giai pt
\(5sinx-2=3\left(1-sinx\right)tan^2x\)
\(2.cos2x.cosx=1+cos2x+cos3x\)
\(cos2x+cosx+4sin^2\left(\dfrac{x}{2}\right)-1\)
Pt 1.
Bạn tham khảo phương trình 1 hộ mình nha. Chúc bạn học tốt
Giải phương trình: \(sin3x-cos3x+sinx+cosx=\dfrac{1}{sin3x+cosx}-\dfrac{1}{cos3x-sinx}\)
ĐKXĐ: ...
\(sin3x-cos3x+sinx+cosx=\dfrac{sin3x-cos3x+sinx+cosx}{\left(sin3x+cosx\right)\left(cos3x-sinx\right)}\)
\(\Rightarrow\left[{}\begin{matrix}sin3x-cos3x+sinx+cosx=0\left(1\right)\\\left(sin3x+cosx\right)\left(cos3x-sinx\right)=1\left(2\right)\end{matrix}\right.\)
(1) \(\Leftrightarrow3sinx-4sin^3x-4cos^3x+3cosx+sinx+cosx=0\)
\(\Leftrightarrow sinx+cosx+sin^3x+cos^3x=0\)
\(\Leftrightarrow sinx+cosx+\left(sinx+cosx\right)\left(1-sinx.cosx\right)=0\)
\(\Leftrightarrow\left(sinx+cosx\right)\left(2-sinx.cosx\right)=0\)
\(\Leftrightarrow sinx+cosx=0\) (loại)
(2) \(\Leftrightarrow sin3x.cos3x-sinx.cosx-sin3x.sinx+cos3x.cosx=1\)
\(\Leftrightarrow\dfrac{1}{2}sin6x-\dfrac{1}{2}sin2x+cos4x=1\)
\(\Leftrightarrow\dfrac{1}{2}\left(3sin2x-4sin^32x\right)-\dfrac{1}{2}sin2x+1-2sin^22x=1\)
\(\Leftrightarrow sin2x-2sin^32x-2sin^22x=0\)
\(\Leftrightarrow-sin2x\left(2sin^22x+2sin2x-1\right)=0\)
\(\Leftrightarrow...\)
Bài 1 Giải PT
a) sin3x - \(\sqrt{3}cos3x\) = 1
b) 3sin3x + \(\sqrt{3}cos9x\) = 1 + 4sin33x
c) \(\sqrt{3}cos4x\) + sin4x = 2
d) cos3x - sin2x = \(\sqrt{3}\)(cos3x - sin3x)
Bài 2: Cho PT 2m(sinx + cosx) = 2m2 + cosx - sinx +\(\frac{3}{2}\)
a) Giải PT với m= 1
b) Tìm m để PT có nghiệm
Có b nào gipus mk với cần gấp gấp :)
Giải pt lượng giác sau Cos3x=căn2/2
\(cosx=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow x=\pm\dfrac{\pi}{6}+k2\pi\)
giải pt 2sinx + cos3x +sin2x=1+sin4x
\(\Leftrightarrow2sinx+cos3x+sin2x-sin4x-1=0\)
\(\Leftrightarrow2sinx-1+cos3x-2cos3x.sinx=0\)
\(\Leftrightarrow2sinx-1-cos3x\left(2sinx-1\right)=0\)
\(\Leftrightarrow\left(2sinx-1\right)\left(1-cos3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=\frac{1}{2}\\cos3x=1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\\x=\frac{k2\pi}{3}\end{matrix}\right.\)