Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
PH_gaming
Xem chi tiết
M r . V ô D a n h
16 tháng 8 2021 lúc 8:42

2

Ta có:

VP=(a+b)3−3ab(a+b)VP=(a+b)3-3ab(a+b)

     =a3+b3+3ab(a+b)−3ab(a+b)=a3+b3+3ab(a+b)-3ab(a+b)

     =a3+b3=VT(dpcm)

Châu Huỳnh
16 tháng 8 2021 lúc 8:45

1, \(VT=a^2+b^2=a^2+b^2+2ab-2ab=\left(a+b\right)^2-2ab=VP\left(đpcm\right)\)

Đỗ Đàm Phi Long
Xem chi tiết
Lê Ngọc Diệp
Xem chi tiết
Servant of evil
11 tháng 4 2016 lúc 19:09

Áp dụng bdt bunhiacopxki

\(\left(\sqrt{a-1}+\sqrt{b-1}\right)^2<=\left(a-1+1\right)\left(b-1+1\right)=ab\)=>\(\sqrt{a-1}+\sqrt{b-1}<=\sqrt{ab}\)  

cmtt \(\sqrt{ab}+\sqrt{c-1}<=\sqrt{c\left(ab+1\right)}\)  

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:03

a: Ta có: \(a+b+c=0\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(a+c\right)\left(b+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:14

a) \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)(đúng do a+b+c = 0)

Lấp La Lấp Lánh
21 tháng 8 2021 lúc 21:21

b) Ta có: \(\left\{{}\begin{matrix}\left(a-b\right)^2\ge0\\\left(b-c\right)^2\ge0\\\left(c-a\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a^2+b^2\ge2ab\\b^2+c^2\ge2bc\\c^2+a^2\ge2ac\end{matrix}\right.\Rightarrow a^2+b^2+c^2\ge ab+ac+bc\)

\(ĐTXR\Leftrightarrow a=b=c\), mà a,b,c đôi một khác nhau => Đẳng thức không xảy ra\(\Rightarrow a^2+b^2+c^2>ab+ac+bc\Rightarrow a^2+b^2+c^2-ab-ac-bc>0\)

Ta có: \(a^3+b^3+c^3=3abc\Leftrightarrow\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc=0\Leftrightarrow\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)\(\Rightarrow a+b+c=0\)( do (1))

Lelemalin
Xem chi tiết
Nguyễn Lê Phước Thịnh
21 tháng 8 2021 lúc 21:29

a: Ta có: a+b+c=0

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=-c\\a+c=-b\\b+c=-a\end{matrix}\right.\)

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^3=0\)

\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow a^3+b^3+c^3=3abc\)

b: Ta có: \(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

\(\Leftrightarrow a+b+c=0\)

Ngô Thành Chung
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 1 2021 lúc 17:12

\(\left(a^3+b^3\right)\left(a+b\right)=ab\left(1-a\right)\left(1-b\right)\)

\(\Leftrightarrow\left(1-a\right)\left(1-b\right)=\left(\dfrac{a^2}{b}+\dfrac{b^2}{a}\right)\left(a+b\right)\ge\left(a+b\right)^2\ge4ab\)

\(\Rightarrow1+ab-4ab\ge a+b\ge2\sqrt{ab}\)

\(\Rightarrow3ab+2\sqrt{ab}-1\le0\)

\(\Leftrightarrow\left(\sqrt{ab}+1\right)\left(3\sqrt{ab}-1\right)\le0\)

\(\Leftrightarrow ab\le\dfrac{1}{9}\)

danhdanhdanh
Xem chi tiết
Trần Đức Thắng
6 tháng 2 2016 lúc 9:07

Vì \(a\in\left[-2;5\right]\Rightarrow\left(a+2\right)\left(a-5\right)\le0\Leftrightarrow a^2-3a-10\le0\Leftrightarrow a^2\le3a+10\)(1)

CMTT \(b^2\le3b+10\Rightarrow2b^2\le6b+20\left(2\right)\) ; \(c^2\le3c+10\Leftrightarrow3c^2\le9c+30\)(3)

        Từ (1) (2) và (3) => \(a^2+2b^2+3c^2\le3\left(a+2b+3c\right)+60\le3.2+60=66\)

BĐT đc cm 

Nguyễn Doãn Bảo
6 tháng 2 2016 lúc 9:01

xin lỗi mình mới học lớp  8

Đoàn Thị Thu Hương
Xem chi tiết
Thầy Giáo Toán
20 tháng 8 2015 lúc 21:55

Bài này xoay quanh hằng đẳng thức sau:    \(x^2+xa+xb+ab=\left(x+a\right)\left(x+b\right)\).

Thực vậy, theo giả thiết \(-d=a+b+c\)  nên ta có \(ab-cd=ab+c\left(a+b+c\right)=\left(c+a\right)\left(c+b\right).\)

Tương tự, \(bc-ad=bc+a\left(a+b+c\right)=\left(a+b\right)\left(a+c\right),\)

\(ca-bd=ca+b\left(a+b+c\right)=\left(b+a\right)\left(b+c\right).\)

Do đó \(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}=\sqrt{\left(c+a\right)\left(c+b\right)\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)}\)

\(=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)  là một số hữu tỉ.

Bảo Uyên Ngô
Xem chi tiết