Cho a,b,c thuộc R và a,b,c>=1
CMR \(\sqrt{a-1}+\sqrt{b-1}+\sqrt{c-1}<=\sqrt{c\left(ab+1\right)}\)
1,Cho các số a,b,c thuộc [-2;5] Thỏa mãn:
a+2b+3c<=2
CMR:\(a^2+2b^2+3c^2\le66\)
2,Cho a,b,c thuộc [0;2] ,a+b+c=3
CMR: \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\ge\sqrt{2}\)
cho a,b,c,d thuộc Q và a+b+c+d=0 CMR
\(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}\) thuộc Q
Ai làm đc ko?
cho a,b>2 cmr\(\sqrt{a}\sqrt{ab-a}+\sqrt{b}\sqrt{ab-b}\le\sqrt{\left(a+b\right)\left(-a-b-2ab\right)}\)
Cho a;b;c;d thuộc Q và a+b+c+d=0.CMR:
\(\sqrt{\left(ab-cd\right)\left(bc-ad\right)\left(ca-bd\right)}\in Q\)
Cho a,b dương CMR
\(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\ge\sqrt{ab}+\frac{a+b}{2}\)
Rút gọn:
\(a,A=\sqrt{9\left(a+b\right)}-2\sqrt{16\left(a+b\right)}-3\sqrt{a+b}+\frac{1}{5}\sqrt{25\left(a+b\right)}\)
\(b,B=\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}\)
\(c,C=\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}\)
\(d,D=\frac{\frac{2ab\sqrt{a}}{\sqrt{a}+\sqrt{b}}+\frac{2ab\sqrt{b}}{\sqrt{a}+\sqrt{b}}}{\frac{2ab}{a+\sqrt{ab}}+\frac{2ab}{b+\sqrt{ab}}}\)
Giúp mình với.Thanks
cho: a,b,c thuộc R+. Thỏa mãn ab+bc+ac\(\ge1\)
CMR: \(\frac{1}{\sqrt{a^2+ab+b^2}}+\frac{1}{\sqrt{b^2+bc+c^2}}+\frac{1}{\sqrt{c^2+ac+a^2}}\ge\frac{9}{\left(a+b+c\right)^2}\)
Bài 1. Cho a, b, c \(\in\)Q tm ab+bc+ac=1
CMR: \(A=\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\)là số hữu tỉ
B2. \(B=\sqrt{2+\sqrt{2+...+\sqrt{2}}}\)( có 100 dấu căn)
CMR: B ko là số tự nhiên
B3.
CMR: \(\sqrt{2\sqrt{3\sqrt{4...\sqrt{2000}}}}< 3\)
các đại ca đại tỷ giúp mk với