Cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)tính \(A=x^{2019}+y^{2019}\)
cho \(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tính giá trị biểu thức P=\(x^{2019}+y^{2019}\)
\(\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+\sqrt{x^2+1}}=y+\sqrt{y^2+1}\\\frac{1}{y+\sqrt{y^2+1}}=x+\sqrt{x^2+1}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+\sqrt{x^2+1}=y+\sqrt{y^2+1}\left(1\right)\\-y+\sqrt{y^2+1}=x+\sqrt{x^2+1}\left(2\right)\end{cases}}\)
Cộng vế với vế của (1) và (2) ta có:
\(-2x-2y=0\Leftrightarrow-2\left(x+y\right)=0\Leftrightarrow x+y=0\)
\(\Rightarrow P=x^{2019}+y^{2019}=0\)
cho \(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\). CM: \(x^{2019}+y^{2019}=0\)
Từ gt suy ra: \(x+\sqrt{x^2+2019}=\dfrac{2019}{y+\sqrt{y^2+2019}}=\sqrt{y^2+2019}-y\).
Tương tự: \(y+\sqrt{y^2+2019}=\sqrt{x^2+2019}-x\).
Do đó dễ dàng suy ra được: \(x+y=0\).
\(\Rightarrow x=-y\Rightarrow x^{2019}+y^{2019}=x^{2019}+\left(-x\right)^{2019}=0\left(đpcm\right)\).
Cho \(\left(x+\sqrt{x^2+2019}\right)\left(y+\sqrt{y^2+2019}\right)=2019\)
Tính x + y
\(\left(x+\sqrt{x^2+2019}\right)\left(\sqrt{x^2+2019}-x\right)=x^2+2019-x^2=2019\)
\(\Rightarrow\sqrt{x^2+2019}-x=y+\sqrt{y^2+2019}\left(2\right)\)
Tương tự \(\sqrt{y^2+2019}-y=x+\sqrt{x^2+2019}\left(1\right)\)
Lấy (2) - (1) được: -2x = 2y
<=> -x = y
<=> x + y = 0
cho x,y ,z là các số dương thỏa mãn:xy+yz+zx=2019
Tính gtrị bt\(P=x\sqrt{\frac{\left(y^2+2019\right).\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right).\left(x^2+2019\right)}{y^{2^{ }}+2019}}+z\sqrt{\frac{\left(x^2+2019\right).\left(y^2+2019\right)}{z^2+2019}}\)
Có \(y^2+2019=y^2+xy+yz+zx=y\left(x+y\right)+z\left(x+y\right)=\left(y+z\right)\left(x+y\right)\)
\(x^2+2019=x^2+xy+yz+zx=x\left(x+y\right)+z\left(x+y\right)=\left(x+z\right)\left(x+y\right)\)
\(z^2+2019=z^2+xy+yz+xz=z\left(z+y\right)+x\left(y+z\right)=\left(z+x\right)\left(y+z\right)\)
Có \(P=x\sqrt{\frac{\left(y^2+2019\right)\left(z^2+2019\right)}{x^2+2019}}+y\sqrt{\frac{\left(z^2+2019\right)\left(x^2+2019\right)}{y^2+2019}}+z\sqrt{\frac{\left(x^2+2019\right)\left(y^2+2019\right)}{z^2+2019}}\)
=\(x\sqrt{\frac{\left(y+z\right)\left(x+y\right)\left(x+z\right)\left(z+y\right)}{\left(x+z\right)\left(y+x\right)}}+y\sqrt{\frac{\left(z+x\right)\left(y+z\right)\left(x+z\right)\left(x+y\right)}{\left(y+z\right)\left(x+y\right)}}+z\sqrt{\frac{\left(x+z\right)\left(x+y\right)\left(y+z\right)\left(x+y\right)}{\left(z+x\right)\left(y+z\right)}}\)
=\(x\sqrt{\left(y+z\right)^2}+y\sqrt{\left(x+z\right)^2}+z\sqrt{\left(x+y\right)^2}\)
=\(x\left|y+z\right|+y\left|x+z\right|+z\left|x+y\right|\)
=\(x\left(y+z\right)+y\left(x+z\right)+z\left(x+y\right)\) (vì x,y,z >0)
= xy+xz+xy+yz+xz+yz
=2(xy+xz+yz)=2.2019(vì xy+xz+yz=2019)
=4038
Vậy P=4038
\(\text{Tính }A=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)+2019\) \(\text{biết }x-y=\sqrt{12\sqrt{5}+29}\)
\(x-y=\sqrt{29+12\sqrt{5}}=2\sqrt{5}+3\)
\(A=x^3-y^3+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y\right)\left(x^2+y^2+xy\right)+x^2+y^2+xy-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2+xy\right)-3xy\left(x-y+1\right)+2019\)
\(=\left(x-y+1\right)\left(x^2+y^2-2xy\right)+2019\)
\(=\left(x-y+1\right)\left(x-y\right)^2+2019\)
\(=\left(4+2\sqrt{5}\right)\left(3+2\sqrt{5}\right)^2+2019\)
\(=2255+106\sqrt{5}\)
Cho x và y là các số dương thoả mãn \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
Tính giá trị của biểu thức: \(A=x\sqrt{1+y^2}+y\sqrt{1+x^2}\)
Có: \(xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=\sqrt{2019}\)
\(\Leftrightarrow\left[xy+\sqrt{\left(1+x^2\right)\left(1+y^2\right)}\right]^2=2019\)
\(\Leftrightarrow x^2y^2+\left(1+x^2\right)\left(1+y^2\right)+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow x^2y^2+x^2y^2+x^2+y^2+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow y^2\left(1+x^2\right)+x^2\left(1+y^2\right)+1+2xy\sqrt{\left(1+x^2\right)\left(1+y^2\right)}=2019\)
\(\Leftrightarrow\left[y\left(1+x^2\right)+x\left(1+y^2\right)\right]^2=2018\)
\(\Leftrightarrow y\left(1+x^2\right)+x\left(1+y^2\right)=\sqrt{2018}\)
hay \(A=\sqrt{2018}\)
Giải hệ phương trình:
\(\hept{\begin{cases}x^2+y^2=1\\\sqrt[2019]{x}-\sqrt[2019]{y}=\left(\sqrt[2020]{y}-\sqrt[2020]{x}\right)\left(xy+x+y+2021\right)\end{cases}}\)
xét x=y,x>y và x<y chú ý tới điều kiện x,y thuộc -1;1 nữa
Cho\(\left(x+\sqrt{x^2+2017}\right)\cdot\left(y+\sqrt{y^2+2017}\right)=2017\)
Tính A=\(x^{2019}+y^{2019}\)
Cho x,y là 2 số t/m : \(\left(x+\sqrt{x^2+\sqrt{2019}}\right)\)\(\left(y+\sqrt{y^2+\sqrt{2019}}\right)=\sqrt{2019}\)