Cho a, b, c là các số dương và \(a^2+b^2+c^2=1\). Tìm GTNN của
P= \(\frac{bc}{a}+\frac{ac}{a}+\frac{ab}{c}\)
1. Cho a + b + c = 9 và a,b,c là các số dương. Tìm GTNN của P = \(\left(a^2+\frac{1}{a^2}\right)\left(b^2+\frac{1}{b^2}\right)\left(c^2+\frac{1}{c^2}\right)\)
2. Cho a,b,c > 0 thõa mãn: a + b + c = 1. Tìm GTNN của Q = \(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\)
đây là 1 sự nhầm lẫn đối với các bạn nhác tìm dấu = :))
Sử dụng BĐT Svacxo ta có :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\)
\(=\frac{1}{a^2+b^2+c^2}+\frac{18}{2ab+2bc+2ca}\ge\frac{\left(1+\sqrt{18}\right)^2}{a^2+b^2+c^2+2ab+2bc+2ca}\)
\(=\frac{19+\sqrt{72}}{\left(a+b+c\right)^2}=\frac{25\sqrt{2}}{1}=25\sqrt{2}\)
bài làm của e :
Áp dụng BĐT Svacxo ta có :
\(Q\ge\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}=\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\)
Theo hệ quả của AM-GM thì : \(ab+bc+ca\le\frac{\left(a+b+c\right)^2}{3}=\frac{1}{3}\)
\(< =>\frac{7}{ab+bc+ca}\ge\frac{7}{\frac{1}{3}}=21\)
Tiếp tục sử dụng Svacxo thì ta được :
\(\frac{1}{a^2+b^2+c^2}+\frac{1}{ab+bc+ca}+\frac{1}{ab+bc+ca}+\frac{7}{ab+bc+ca}\ge\frac{9}{\left(a+b+c\right)^2}+21=30\)
Vậy \(Min_P=30\)đạt được khi \(a=b=c=\frac{1}{3}\)
Và đương nhiên cách bạn dcv_new chỉ đúng với \(k\ge2\) ở bài:
https://olm.vn/hoi-dap/detail/259605114604.html
Thực ra bài Min \(\frac{1}{a^2+b^2+c^2}+\frac{9}{ab+bc+ca}\) khi a + b + c = 1
chỉ là hệ quả của bài \(\frac{1}{a^2+b^2+c^2}+\frac{k}{ab+bc+ca}\) khi \(a+b+c\le1\)
Ngoài ra nếu \(k< 2\) thì min là: \(\left(1+\sqrt{2k}\right)^2\)
Biết a, b, c là các số thực dương. Và \(\frac{a}{a+1}+\frac{b}{b+1}+\frac{c}{c+1}=2\)
Tìm GTNN của: \(ab+bc+ac\)
Ta có \(\frac{a}{a+1}=\left(1-\frac{b}{1+b}\right)+\left(1-\frac{c}{1+c}\right)=\frac{1}{1+b}+\frac{1}{1+c}\ge2\sqrt{\frac{1}{\left(1+b\right)\left(1+c\right)}}\left(1\right)\)
CMTT \(\frac{b}{b+1}\ge2\sqrt{\frac{1}{\left(1+a\right)\left(1+c\right)}}\left(2\right)\)
\(\frac{c}{c+1}\ge2\sqrt{\frac{1}{\left(a+1\right)\left(b+1\right)}}\left(3\right)\)
Nhân các vế của (1);(2);(3)
=> \(abc\ge8\)
=> \(ab+bc+ac\ge3\sqrt[3]{a^2b^2c^2}\ge12\)
=> \(Min\left(ab+bc+ac\right)=12\)khi \(a=b=c=2\)
Theo gt ta có:
\(\frac{a}{a+1}=1-\frac{b}{b+1}+1-\frac{c}{c+1}=\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{2}{\sqrt{\left(b+1\right)\left(c+1\right)}}\)
Cmtt ta có: \(\frac{b}{b+1}\ge\frac{2}{\sqrt{\left(a+1\right)\left(c+1\right)}}\)
Nhân theo vế của BĐT trên ta được
\(\frac{ab}{\left(a+1\right)\left(b+1\right)}\ge\frac{4}{\left(c+1\right)\sqrt{\left(a+1\right)\left(b+1\right)}}\)
\(\Leftrightarrow ab\ge\frac{4\sqrt{\left(a+1\right)\left(b+1\right)}}{c+1}\)
Tương tự cũng có: \(\hept{\begin{cases}bc\ge\frac{4\sqrt{\left(b+1\right)\left(c+1\right)}}{a+1}\\ca\ge\frac{4\sqrt{\left(c+1\right)\left(a+1\right)}}{b+1}\end{cases}}\)
Cộng lại theo vế 3 BĐT trên và sủ dụng AM-GM ta được
\(P=ab+bc+ca\ge12\)
Dấu "=" xảy ra <=> a=b=c=2
cho a,bc là các số thực dương thỏa mãn a+b+c=3
Tìm GTNN của biểu thức \(P=\frac{a^3}{a^2+ab+b^2}+\frac{b^3}{b^2+bc+c^2}+\frac{c^3}{c^2+ac+a^2}\)
Gọi \(S=\frac{b^3}{a^2+ab+b^2}+\frac{c^3}{b^2+ab+c^2}+\frac{a^3}{c^2+ab+a^2}\)
Dễ thấy \(P-S=0\)
\(\Rightarrow2P=\frac{a^3+b^3}{a^2+ab+b^2}+\frac{b^3+c^3}{b^2+ab+c^2}+\frac{c^3+a^3}{c^2+ab+a^2}\)
Ta chứng minh:
\(\frac{a^3+b^3}{a^2+ab+b^2}\ge\frac{a+b}{3}\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)^2\ge0\)(đúng)
\(\Rightarrow2P\ge\frac{a+b}{3}+\frac{b+c}{3}+\frac{c+a}{3}=\frac{2\left(a+b+c\right)}{3}=2\)
\(\Rightarrow P\ge1\)
Cho a,b,c là các số thực dương thỏa mãn ab + bc + ac = 3. Tìm GTNN của biểu thức P = \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)
Ta có: \(\frac{1+3a}{1+b^2}=\left(1+3a\right).\frac{1}{1+b^2}=\left(1+3a\right)\left(1-\frac{b^2}{1+b^2}\right)\)
\(\ge\left(1+3a\right)\left(1-\frac{b^2}{2b}\right)=\left(1+3a\right)\left(1-\frac{b}{2}\right)\)
\(=3a+1-\frac{b}{2}-\frac{3ab}{2}\)(1)
Tương tự ta có: \(\frac{1+3b}{1+c^2}=3b+1-\frac{c}{2}-\frac{3bc}{2}\)(2); \(\frac{1+3c}{1+a^2}=3c+1-\frac{a}{2}-\frac{3ca}{2}\)(3)
Cộng theo vế của 3 BĐT (1), (2), (3), ta được: \(\frac{1+3a}{1+b^2}+\frac{1+3b}{1+c^2}+\frac{1+3c}{1+a^2}\)\(\ge3\left(a+b+c\right)-\frac{a+b+c}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(=\frac{5\left(a+b+c\right)}{2}-\frac{3\left(ab+bc+ca\right)}{2}+3\)
\(\ge\frac{5.\sqrt{3\left(ab+bc+ca\right)}}{2}-\frac{3.3}{2}+3=\frac{15}{2}-\frac{9}{2}+3=6\)
Đẳng thức xảy ra khi a = b = c = 1
Cho a,b,c là các số thực dương thỏa mãn:
\(a^2+b^2+c^2=1\)
Tìm GTNN của biểu thức:
\(P=\frac{ab}{c}+\frac{bc}{a}+\frac{ac}{b}\)
Có 2 cáchm cách 1 dài nên làm cách 2 cho ngắn
Áp dụng BĐT AM-GM ta có
\(\left(\frac{bc}{a}+\frac{ca}{b}+\frac{ac}{c}\right)^2\ge3\left(\frac{bc}{a}\cdot\frac{ca}{b}+\frac{bc}{a}\cdot\frac{ab}{c}+\frac{ca}{b}\cdot\frac{ab}{c}\right)=3\left(a^2+b^2+c^2\right)=3\)
\(\Rightarrow P\ge\sqrt{3}\). Dấu "=" xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Cho a,b,c là các số dương thỏa mãn a+b+c+ab+bc+ca=6abc. Tìm GTNN của P = \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\)
\(a+b+c+ab+bc+ca=6abc\)
\(\Leftrightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=6\)
Đặt \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
\(\Rightarrow\hept{\begin{cases}x+y+z+xy+yz+zx=6\\P=x^2+y^2+z^2\end{cases}}\)
\(6=x+y+z+xy+yz+zx\le x+y+z+\frac{\left(x+y+z\right)^2}{3}\)
\(\Leftrightarrow x+y+z\ge3\)
\(\Rightarrow P=x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\ge\frac{9}{3}=3\)
Bài 1:Cho a,b,c là các số thực dương thỏa mãn a+b=1.Tìm GTNN của bt sau
\(a,A=\frac{2}{ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\)
\(b,B=\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\)
Bài 2:Cho a,b,c là 3 số dương thỏa mãn a+b+c=9.tìm GTNN của bt
\(a,A=\frac{a^2}{b+c}+\frac{b^2}{a+c}+\frac{c^2}{b+a}\) \(b,B=\frac{a^3}{c^2+b^2}+\frac{b^3}{a^2+c^2}+\frac{c^3}{a^2+b^2}\)
Bai 3:Cho x,y là 2 số dương thỏa mãn \(x^2+y^2=4\) Tìm GTNN của bt \(A=\left(x+\frac{1}{y}\right)^2+\left(y+\frac{1}{x}\right)^2\)
Bài 4 Cho a,b,c là các số không âm thỏa mãn a+b+c=1 Tìm GTLN của bt
\(a,A=\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}\) \(b,B=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)
1a
\(A=\frac{3}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^4+b^4}{2}\ge\frac{6}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^2+b^2\right)^2}{2}}{2}\)
\(\ge10+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{4}=10+\frac{1}{16}=\frac{161}{16}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(A_{min}=\frac{161}{16}\)
1b.\(B=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+b^2}+\frac{a^8+b^8}{4}\ge\frac{2}{\left(a+b\right)^2}+\frac{4}{\left(a+b\right)^2}+\frac{\frac{\left(a^4+b^4\right)^2}{2}}{4}\)
\(\ge6+\frac{\left[\frac{\left(a^2+b^2\right)^2}{2}\right]^2}{8}\ge6+\frac{\left[\frac{\left(a+b\right)^2}{2}\right]^2}{32}=6+\frac{1}{128}=\frac{769}{128}\)
Dau '=' xay ra khi \(a=b=\frac{1}{2}\)
Vay \(B_{min}=\frac{769}{128}\)khi \(a=b=\frac{1}{2}\)
Bài 2 Dùng Cauchy-Schwarz dạng Engel là ra:D
Bài 3:Đừng vội dùng Cauchy-Schwarz dạng Engel ngay kẻo bị phức tạp:v Thay vào đó hãy khai triển nó ra:
\(A=x^2+y^2+2\left(\frac{x}{y}+\frac{y}{x}\right)+\frac{1}{x^2}+\frac{1}{y^2}\)
\(\ge4+2.2+\frac{4}{x^2+y^2}=4+4+1=9\)
Đẳng thức xảy ra khi \(x=y=\sqrt{2}\)
Bài 4: Dùng Cauchy or Bunhiacopxki là ok!
Cho a,b,c là các số dương thỏa mãn điều kiện: a+b+c+ab+bc+ca=6abc.
Tìm GTNN của M=\(\frac{1}{a^{a^2}}+\frac{1}{b^2}+\frac{1}{c^2}\)
Bài 1: Cho a,b,c là các số thực dương thỏa nãm a+b+c=1. Tìm GTNN của biểu thức
\(H=\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\)
Bài 2:Cho a,b là các số thực dương thỏa mãn \(a^2-6ab-2b^2=0\)
Tính giá trị của biểu thức \(P=\frac{ab}{a^2+2b^2}\)
Cho a, b, c là các số thực dương. Tìm GTNN của biểu thức:
P = \(\frac{1+a^3}{1+ab^2}+\frac{1+b^3}{1+bc^2}+\frac{1+c^3}{1+ca^2}\)
\(\left(1+a^3\right)\left(1+b^3\right)\left(1+b^3\right)\ge\left(1+ab^2\right)^3\)
\(\Leftrightarrow\)\(\frac{1+a^3}{1+ab^2}\ge\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}\)
\(\Rightarrow\)\(3P\ge\Sigma\frac{\left(1+ab^2\right)^2}{\left(1+b^3\right)^2}+2\Sigma\frac{1+a^3}{1+ab^2}\ge9\sqrt[9]{\frac{\Pi\left(1+ab^2\right)^2}{\Pi\left(1+a^3\right)^2}\left(\frac{\Pi\left(1+a^3\right)}{\Pi\left(1+ab^2\right)}\right)^2}=9\)
\(\Rightarrow\)\(P\ge3\)
dấu "=" xảy ra \(\Leftrightarrow\)\(a=b=c\)