Cho tam giác ABC cân tại A. Kẻ AH vuông góc BC tại H. Biết AB=5cm ; BC= 6cm
a) chứng minh BH=HC.tính BH,AH?
b) gọi G là trọng tâm tam giác ABC, chứng minh A,G,H thẳng hàng
c) chứng minh ABG=ACG
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho AH=4cm,AB=5cm
Chu vi tam giác ABC
A. 18 (cm)
B. 15 (cm)
C. 16 (cm)
D. 20 (cm)
Cho tam giác ABC cân tại A . Biết AB =AC=5cm , BC=8cm . Kẻ Ah vuông góc vs BC (H thuộc BC ) . a) Tính AH
b) Gọi D và E là chân đường vuông góc kẻ từ H đến AB và AC . C/m tam giác HDE cân .
c) C/m : DE//BC
a) Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC(ΔBAC cân tại A)
AH chung
Do đó: ΔABH=ΔACH(Cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
mà BH+CH=BC(H nằm giữa B và C)
nên \(BH=CH=\dfrac{BC}{2}=\dfrac{8}{2}=4\left(cm\right)\)
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=BH^2+AH^2\)
\(\Leftrightarrow AH^2=AB^2-BH^2=5^2-4^2=9\)
hay AH=3(cm)
Vậy: AH=3cm
b) Xét ΔDBH vuông tại D và ΔECH vuông tại E có
BH=CH(cmt)
\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)
Do đó: ΔDBH=ΔECH(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A. Kẻ AH vuông góc với BC tại H. Cho AH=4cm,AB=5cm
Tính BH
A. 2 (cm)
B. 5 (cm)
C. 3 (cm)
D. 4 (cm)
cho tam giác abc cân tại a biết ab=ac=5cm và bc=8cm. Dựng AH vuông góc với BC tại H. Kẻ AE vuông góc với AB tại E và kẻ AF vuông góc với AC tại F. chứng minh EF // BC
Cho tam giác ABC cân tại A, kẻ AH vuông góc BC ( H thuộc BC) a. Chứng minh : BH = HC và góc BAH = góc CAH b. Biết AB = AC = 5cm; BC = 8cm. Tính AH
a) Xét tam giác ABH và tam giác ACH có:
\(\widehat{AHB}=\widehat{AHC}=90^0\) (gt)
\(AB=AC\) (Do tam giác ABC cân tại A)
\(AH\) chung
\(\Rightarrow\Delta ABH=\Delta ACH\) (ch-cgv) \(\Rightarrow BH=CH\) (2 cạnh tương ứng)
b) Do \(\Delta ABH=\Delta ACH\Rightarrow\widehat{BAH}=\widehat{CAH}\) (2 góc tương ứng)
c) Do \(BH=CH\Rightarrow BH=CH=\dfrac{1}{2}BC=4\left(cm\right)\)
Áp dụng ĐL Pytago ta có: \(AB^2=AH^2+BH^2\)
\(5^2=AH^2+4^2\Rightarrow AH^2=5^2-4^2=9\Rightarrow AH=3\left(cm\right)\)
Cho tam giác ABC cân tại A. Biết AC=5cm, BC=6cm. Kẻ AH vuông góc với BC tại H a) CMR: Tam giác ABH=tam giác ACH. b) Tính độ dài đoạn thẳng AH c) Từ H kẻ đường thẳng song song với AC, cắt AB tại M. CMR: M là trung điểm của AB
a: Xét ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
DO đó: ΔABH=ΔACH
b: BH=CH=BC/2=3cm
=>AH=4(cm)
c: Xét ΔABC có
H là trung điểm của BC
HM//AC
Do đó: M là trung điểm của AB
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) Chứng minh DE vuông góc với AH
bạn chép đề thiếu rùi kìa, DE chui từ đâu ra vậy ??? sửa đề rõ ràng ra giúp mk vs, bạn vẽ hình rùi ghi giả thiết , kết luận gửi cho mk đi để mk làm
cho tam giác abc cân tại a có ab = ac =5cm bc=8cm kẻ ah vuông góc với bc (H thuộc B) b) Kẻ HD vuông góc với AB (D thuộc AB) ;HE vuông góc với AC (E thuộc AC) . CMR Tam giác HDE là tam giác cân
b) Xét ΔBAH vuông tại H và ΔCAH vuông tại H có
BA=CA(ΔBAC cân tại A)
AH chung
Do đó: ΔBAH=ΔCAH(cạnh huyền-cạnh góc vuông)
Suy ra: BH=CH(hai cạnh tương ứng)
Xét ΔDHB vuông tại D và ΔEHC vuông tại E có
HB=HC(cmt)
\(\widehat{B}=\widehat{C}\)(ΔABC cân tại A)
Do đó: ΔDHB=ΔEHC(Cạnh huyền-góc nhọn)
Suy ra: HD=HE(Hai cạnh tương ứng)
Xét ΔHDE có HD=HE(cmt)
nên ΔHDE cân tại H(Định nghĩa tam giác cân)
Cho tam giác ABC cân tại A có AB = 5cm, BC = 6cm. Kẻ AH vuông góc với BC ( H thuộc BC ). Tính độ dài đoạn AH
\(AH\perp BC\)
=> AH là đường cao của \(\Delta ABC\)
\(\Delta ABC\) cân tại A có AH là đường cao cũng là đường trung tuyến
\(\Rightarrow BH=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Xét \(\Delta HAB\) vuông tại H (AH là đường cao) có:
\(AB^2=AH^2+BH^2\left(Pytago\right)\\ \Rightarrow AH^2=AB^2-BH^2\\ \Rightarrow AH=\sqrt{AB^2-BH^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)