Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thị Thanh Trang
Xem chi tiết
Bée Changg
Xem chi tiết
Nguyễn Việt Lâm
26 tháng 2 2023 lúc 10:33

a.

\(x^2+4y^2+4xy=0\)

\(\Leftrightarrow\left(x+2y\right)^2=0\)

\(\Leftrightarrow x+2y=0\)

\(\Leftrightarrow x=-2y\)

Vậy pt đã cho có vô số nghiệm dạng \(\left(x;y\right)=\left(-2k;k\right)\) với k là số thực bất kì (nếu đề đúng)

b.

\(2y^4-9y^3+2y^2-9y=0\)

\(\Leftrightarrow2y^2\left(y^2+1\right)-9y\left(y^2+1\right)=0\)

\(\Leftrightarrow\left(2y^2-9y\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow y\left(2y-9\right)\left(y^2+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\2y-9=0\\y^2+1=0\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}y=0\\y=\dfrac{9}{2}\end{matrix}\right.\)

c. Em kiểm tra lại đề chỗ \(3xy^2\), đề đúng như vậy thì pt này ko giải được

Cố gắng hơn nữa
Xem chi tiết
alibaba nguyễn
18 tháng 5 2018 lúc 14:05

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Rightarrow x^2-3=n^2\)

\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)

tth_new
19 tháng 5 2018 lúc 20:01

\(x^2y^2-x^2-7y^2=4xy\)

\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)

\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)

\(\Leftrightarrow x^2-3=y^2\)

\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)

Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm

Doraemon
8 tháng 11 2018 lúc 17:15

x2y2−3y2=x2+4y2+4xy⇔y2(x2−3)=(x+2y)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là số chính phương , nên  là số chính phương

x2−3=a2⇔x2−a2=3⇔(x−a)(x+a)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">

đến đây bạn lập bảng ước ra là được

Nhok_baobinh
Xem chi tiết
vũ tiền châu
7 tháng 1 2018 lúc 14:49

VT sẽ được phân tích thành 

\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)

Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên 

^_^

Nhok_baobinh
7 tháng 1 2018 lúc 14:51

thanks chị nhiều ^_^

ĐỖ THỊ ANH THƯ
Xem chi tiết
🙂T😃r😄a😆n😂g🤣
Xem chi tiết
Nguyễn Việt Lâm
18 tháng 4 2021 lúc 22:42

\(\Leftrightarrow5\left(x^4+2x^2+1\right)+2\left(y^6+2y^3+1\right)=13\)

\(\Leftrightarrow5\left(x^2+1\right)^2+2\left(y^3+1\right)^2=13\)

\(\Leftrightarrow\left(x^2+1\right)^2=\dfrac{13-2\left(y^3+1\right)^2}{5}\le\dfrac{13}{5}< 4\)

\(\Rightarrow x^2+1< 2\Rightarrow x^2< 1\)

\(\Leftrightarrow x=0\)

\(\Rightarrow y^6+2y^3-3=0\Rightarrow\left[{}\begin{matrix}y^3=1\Rightarrow y=1\\y^3=-3\left(ktm\right)\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(0;1\right)\)

oOo Min min oOo
Xem chi tiết
Nguyễn Ngọc Linh Nhi
Xem chi tiết
Vinne
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 9 2021 lúc 17:07

\(\Leftrightarrow4x^2-4xy+y^2=16-3y^2\)

\(\Leftrightarrow16-3y^2=\left(2x-y\right)^2\ge0\)

\(\Rightarrow y^2\le\dfrac{16}{3}\)

\(\Rightarrow y^2=\left\{1;4\right\}\)

\(\Rightarrow\left[{}\begin{matrix}y=1\\y=2\end{matrix}\right.\)

- Với \(y=1\Rightarrow4x^2-4x+4=16\Leftrightarrow x^2-x-3=0\) (ko có x nguyên thỏa mãn)

- Với \(y=2\Rightarrow4x^2-8x=0\Rightarrow x=2\)

Vậy \(\left(x;y\right)=\left(2;2\right)\)

Edogawa Conan
7 tháng 9 2021 lúc 17:12

Ta có: 4x2-4xy+4y2=16 

      ⇔ (2x-y)2+3y2=16 (1)

Vì (2x-y)2≥0 ⇒ 3y2≤16

                    ⇔ \(y^2\le\dfrac{16}{3}\)

                    ⇔ y2={1;4} ⇔ y={1;2}     

- Với y=1 ⇔ (2x-1)2 = 13 (loại do x nguyên dương)

- Với y=2 ⇔ (2x-2)2 = 4 \(\Leftrightarrow\left[{}\begin{matrix}2x-2=2\\2x-2=-2\end{matrix}\right.\text{⇔}\left[{}\begin{matrix}x=2\left(tm\right)\\x=0\left(loại\right)\end{matrix}\right.\)          

Vậy (x;y)=(2;2)