cho x,y,z > 0 thỏa mãn \(\frac{1}{^{x^2}}\)+ \(\frac{1}{y^2}\)+ \(\frac{1}{z^2}\)= 1
Tìm giá trị lớn nhất của biểu thức :
P = \(\frac{1}{\sqrt{5x^2+2xy+2y^2}}\)+ \(\frac{1}{\sqrt{5y^2+2yz+2z^2}}\)+ \(\frac{1}{\sqrt{5z^2+2xz+2x^2}}\)
CHo x,y,z > 0 thỏa mãn \(\frac{1}{x^2}\)+ \(\frac{1}{y^2}\)+ \(\frac{1}{z^2}\)= 1
tìm giá trị lớn nhất của biểu thức :
P= \(\frac{1}{\sqrt{5x^2+2xy+2y^2}}\)+ \(\frac{1}{\sqrt{5y^2+2yz+2z^2}}\)+\(\frac{1}{\sqrt{5z^2+2xz+2x^2}}\)
cho x,y,z> 0 thỏa mãn \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\) . Tìm GTLN của
\(P=\frac{1}{\sqrt{5x^2+2xy+2y^2}}+\frac{1}{\sqrt{5y^2+2yz+2z^2}}+\frac{1}{\sqrt{5z^2+2xz+2x^2}}\)
\(P=\sum\frac{1}{\sqrt{x^2+y^2+4x^2+2xy+y^2}}\le\sum\frac{1}{\sqrt{2xy+4x^2+2xy+y^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\frac{1}{x+x+y}\le\frac{1}{9}\left(\frac{2}{x}+\frac{1}{y}+\frac{2}{y}+\frac{1}{z}+\frac{2}{z}+\frac{1}{x}\right)=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
\(P\le\frac{1}{3}\sqrt{2\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)}=\frac{\sqrt{2}}{3}\)
Dấu "=" xảy ra khi \(x=y=z=\sqrt{3}\)
Cho x,y,z >0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tính giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{xz}\)
Cho x,y,z>0 thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\)
Tìm giá trị nhỏ nhất của biểu thức :
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{zx}\)
Cho x,y,z>0 thỏa mãn: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\sqrt{3}\). Tìm giá trị nhỏ nhất của biểu thức:
\(P=\frac{\sqrt{2x^2+y^2}}{xy}+\frac{\sqrt{2y^2+z^2}}{yz}+\frac{\sqrt{2z^2+x^2}}{zx}\)
ta có: \(\frac{\sqrt{2x^2+y^2}}{xy}=\sqrt{\frac{2}{y^2}+\frac{1}{x^2}}\)
Áp dụng BĐT bunyakovsky:\(\left(2+1\right)\left(\frac{2}{y^2}+\frac{1}{x^2}\right)\ge\left(\frac{2}{y}+\frac{1}{x}\right)^2\)
\(\Rightarrow\frac{2}{y^2}+\frac{1}{x^2}\ge\frac{1}{3}\left(\frac{2}{y}+\frac{1}{x}\right)^2\).....bla bla
\(\text{Với x,y,z là các số thực dương thay đổi và thỏa mãn 1/x+1/y+1/z=3. Tìm giá trị lớn nhất của biểu thức}:P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
Ta có \(\left(2x^2+y^2+3\right)\left(2+1+3\right)\ge\left(2x+y+3\right)^2\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{2x+y+3}\)
Mà \(\frac{1}{2x+y+3}=\frac{1}{x+x+y+1+1+1}\le\frac{1}{36}\left(\frac{1}{x}+\frac{1}{x}+\frac{1}{y}+3\right)\)
=> \(\frac{1}{\sqrt{2x^2+y^2+3}}\le\frac{\sqrt{6}}{36}\left(\frac{2}{x}+\frac{1}{y}+3\right)\)
Khi đó
\(P\le\frac{\sqrt{6}}{36}\left(\frac{3}{x}+\frac{3}{y}+\frac{3}{z}+9\right)=\frac{\sqrt{6}}{36}.18=\frac{\sqrt{6}}{2}\)
Dấu bằng xảy ra khi x=y=z=1
Vậy \(MaxP=\frac{\sqrt{6}}{2}\)khi x=y=z=1
dễ vãi mà ko giải đc NGU
Cho \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=1\).Tìm GTLN của P = \(\frac{1}{\sqrt{5x^2+2xy+2y^2}}+\frac{1}{\sqrt{5y^2+2yz+2z^2}}+\frac{1}{\sqrt{5z^2+2xz+2z^2}}\)
\(1=\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\ge\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)^2\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\le\sqrt{3}\)
\(P=\sum\frac{1}{\sqrt{\left(2x+y\right)^2+\left(x-y\right)^2}}\le\sum\frac{1}{\sqrt{\left(2x+y\right)^2}}=\sum\frac{1}{2x+y}\)
\(P\le\sum\left(\frac{1}{x+x+y}\right)\le\frac{1}{3}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\le\frac{\sqrt{3}}{3}\)
\(\Rightarrow P_{max}=\frac{\sqrt{3}}{3}\) khi \(x=y=z=\sqrt{3}\)
Cho x,y,z >0 thỏa mãn \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=3\). Tìm GTLN của biểu thức \(P=\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}+\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}+\dfrac{1}{\sqrt{5z^2+2xz+2x^2}}\)
\(5x^2+2xy+2y^2-\left(4x^2+4xy+y^2\right)=\left(x-y\right)^2\ge0\\ \Leftrightarrow5x^2+2xy+2y^2\ge4x^2+4xy+y^2=\left(2x+y\right)^2\)
\(\Leftrightarrow P\le\dfrac{1}{2x+y}+\dfrac{1}{2y+z}+\dfrac{1}{2z+x}=\dfrac{1}{9}\left(\dfrac{9}{x+x+y}+\dfrac{9}{y+y+z}+\dfrac{9}{z+z+x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{y}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{z}+\dfrac{1}{x}\right)\\ \Leftrightarrow P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=\dfrac{1}{3}\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)=1\)
Dấu \("="\Leftrightarrow x=y=z=1\)
\(\sqrt{5x^2+2xy+2y^2}=\sqrt{4x^2+2xy+y^2+x^2+y^2}\ge\sqrt{4x^2+2xy+y^2+2xy}=2x+y\)
\(\Rightarrow\dfrac{1}{\sqrt{5x^2+2xy+2y^2}}\le\dfrac{1}{2x+y}=\dfrac{1}{x+x+y}\le\dfrac{1}{9}\left(\dfrac{1}{x}+\dfrac{1}{x}+\dfrac{1}{y}\right)=\dfrac{1}{9}\left(\dfrac{2}{x}+\dfrac{1}{y}\right)\)
Tương tự:
\(\dfrac{1}{\sqrt{5y^2+2yz+2z^2}}\le\dfrac{1}{9}\left(\dfrac{2}{y}+\dfrac{1}{z}\right)\) ; \(\dfrac{1}{\sqrt{5z^2+2zx+2x^2}}\le\dfrac{1}{9}\left(\dfrac{2}{z}+\dfrac{1}{x}\right)\)
Cộng vế:
\(P\le\dfrac{1}{9}\left(\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}\right)=1\)
\(P_{max}=1\) khi \(x=y=z=1\)
cho 3 số thực dương x,y,z thỏa mãn x+y+z=xyz
tìm giá trị lớn nhất của biểu thức p=\frac{1}{\sqrt{x^2+1}}\:+\frac{1}{\sqrt{\gamma ^2+1}}+\frac{1}{\sqrt{z^2+1}}
Bạn cần viết đề bằng công thức toán để được hỗ trợ tốt hơn