rút gọn biểu thức
a) A=(x+2)3-(x-2)3-12x2
Rút gọn biểu thức
a) (x + 2)2 + (x – 2)2
b) (x – 3)(x + 3) – (x – 3)(x + 1)
a) đã rút gọn
b) (x-3)(x+3)-(x-3)(x+1)
= (x-3)(x+3-x-1)
= (x-3)2
rút gọn biểu thức
a)A= (2x - 3)^2 - (2x + 3)^2
b)B= (x +1)^2 -2 (2x-1) (1+ x) +4x^2 - 4x + 1
`@` `\text {Ans}`
`\downarrow`
`A= (2x - 3)^2 - (2x + 3)^2`
`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`
`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`
`= -6 * 4x`
`= -24x`
`A=(2x-3)^2-(2x+3)^2`
`A=(2x-3-2x-3)(2x-3+2x+3)`
`A=-6.4x=-24x`
b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1
=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2
=(x+1-2x+1)^2
=(-x+2)^2=x^2-4x+4
Rút gọn biểu thức
a) A= {[(x√x)-1]\[(√x)-1]+√x}{[(x√x)+1]/[(√x)+1]-√x}
b) B={[ 3/x-(√x)-2] +1/[(√x)+1]}.[(√x)-2]
a) \(A=\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)
\(A=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right]\)
\(A=\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)
\(A=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)
\(A=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2\)
\(A=\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]^2\)
\(A=\left(x-1\right)^2\)
\(A=x^2+2x+1\)
Rút gọn biểu thức
A= căn x+1 B=4 căn x/x+4 A=x-căn x+1
A=3 /2 căn x A=3/căn x+3
A=1-căn x A=x-2 căn x-1
\(A=\sqrt{x}+1\) (đã thu gọn)
\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)
\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)
\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)
\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)
\(A=1-\sqrt{x}\) (đã thu gọn)
\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)
rút gọn biểu thức
a) (2x + 1)(x – 3) – 4x(5 – 2x)
b) (x + 2)2 – 2(x + 3)(x - 3) + 10
c) (4x – 3)(2 – x 2 ) – 2(x – 3)2 – 7x3
a: \(=2x^2-6x+x-3-20x+8x^2\)
\(=10x^2-25x-3\)
b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)
\(=x^2+4x+14-2x^2+18\)
\(=-x^2+4x+32\)
bài 1 : Rút gọn biểu thức
a) 3x.(x-2)-5x(1-x)-8(x^2-3)
b) (7x-3) (2x+1) - (5x-2) (x+4)-9x^2 + 17x
\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)
\(=3x^2-6x-5x+5x^2-8x^2+24\)
\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)
\(=0-11x+24\)
\(=-11x+24\)
\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)
\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)
\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)
\(=0+0+5\)
\(=5\)
Bài 2: Rút gọn biểu thức
a.(-2x3). (x2-5x-1212) -(x3+3)
b.2(x-5y).(x+y)+(x+y)2+(5y-x2)
Lời giải:
a.
$=-2x^5+10x^4+2424x^3-x^3-3=-2x^5+10x^4+2423x^3-3$
b.
$=(x-5y)^2+2(x-5y)(x+y)+(x+y)^2$
$=[(x-5y)+(x+y)]^2=(2x-4y)^2=4x^2-16xy+16y^2$
bài 1 rút gọn biểu thức
a) (2x-5)^2-4x(x+3)
b) (x-2)^3 -6(x+4)(x-4)-(x-2)(x^2+2x+4)
c)(x-1)^2-2(x-1)(x+2)+(x+2)^2+5(2x-3)
bài 2 rút gọn biểu thức
a)(2-3x)^2-5x(x-4)+4(x-1)
b)(3-x)(x^2+3x+9)+(x-3)^3
c)(x-4)^2(x+4)-(x-4)(x+4)^2+3(x^2-16)
1:
a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)
\(=4x^2-20x+25-4x^2-12x\)
=-32x+25
b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)
\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)
\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)
c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)
\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)
\(=\left(-3\right)^2+5\left(2x-3\right)\)
\(=9+10x-15=10x-6\)
2:
a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)
\(=9x^2-12x+4-5x^2+20x+4x-4\)
\(=4x^2+12x\)
b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)
\(=27-x^3+x^3-9x^2+27x-27\)
\(=-9x^2+27x\)
c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)
\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)
\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)
\(=-5\left(x^2-16\right)=-5x^2+80\)
rút gọn các biểu thức
a) (x+1)2-(x-1)2-3(x+1)(x-1)
b) 5(x+2)(x-2) -1/2(6-8x)2+17
a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)
\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)
\(=4x-3x^2+3\)
\(=-3x^2+4x+3\)
b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)
\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)
\(=5x^2-20-32x^2+48x-16+17\)
\(=-27x^2+48x-19\)