Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Daisy
Xem chi tiết
Trường Nguyễn Công
21 tháng 11 2021 lúc 14:17

a) đã rút gọn
b) (x-3)(x+3)-(x-3)(x+1)
= (x-3)(x+3-x-1)
= (x-3)2

huy giang nguyễn trần
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
16 tháng 8 2023 lúc 16:37

`@` `\text {Ans}`

`\downarrow`

`A= (2x - 3)^2 - (2x + 3)^2`

`= [(2x - 3) - (2x + 3)]*[(2x - 3) + (2x + 3)]`

`= (2x - 3 - 2x - 3) * (2x - 3 + 2x + 3)`

`= -6 * 4x`

`= -24x`

2611
16 tháng 8 2023 lúc 16:35

`A=(2x-3)^2-(2x+3)^2`

`A=(2x-3-2x-3)(2x-3+2x+3)`

`A=-6.4x=-24x`

Nguyễn Lê Phước Thịnh
17 tháng 8 2023 lúc 0:57

b: B=(x+1)^2-2(2x-1)(x+1)+4x^2-4x+1

=(x+1)^2-2(2x-1)(x+1)+(2x-1)^2

=(x+1-2x+1)^2

=(-x+2)^2=x^2-4x+4

Hoàn Hà
Xem chi tiết
HT.Phong (9A5)
8 tháng 8 2023 lúc 12:23

a) \(A=\left(\dfrac{x\sqrt{x}-1}{\sqrt{x}-1}+\sqrt{x}\right)\left(\dfrac{x\sqrt{x}+1}{\sqrt{x}+1}-\sqrt{x}\right)\)

\(A=\left[\dfrac{\left(\sqrt{x}\right)^3-1^3}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}\right)^3+1^3}{\sqrt{x}+1}-\sqrt{x}\right]\)

\(A=\left[\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\sqrt{x}-1}+\sqrt{x}\right]\left[\dfrac{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}{\sqrt{x}+1}-\sqrt{x}\right]\)

\(A=\left(x+\sqrt{x}+1+\sqrt{x}\right)\left(x-\sqrt{x}+1-\sqrt{x}\right)\)

\(A=\left(x+2\sqrt{x}+1\right)\left(x-2\sqrt{x}+1\right)\)

\(A=\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)^2\)

\(A=\left[\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\right]^2\)

\(A=\left(x-1\right)^2\)

\(A=x^2+2x+1\)

Dương Thị Anh
Xem chi tiết
Bảo Trần
12 tháng 7 2023 lúc 10:24

gõ latex đi b=)

HT.Phong (9A5)
12 tháng 7 2023 lúc 10:25

\(A=\sqrt{x}+1\) (đã thu gọn)

\(B=\dfrac{4\sqrt{x}}{x+4}\) (đã thu gọn)

\(A=x-\sqrt{x}+1=\sqrt{x}\cdot\sqrt{x}-\sqrt{x}+1=\sqrt{x}\left(\sqrt{x}-1\right)+1\)

\(A=\dfrac{3}{2\sqrt{x}}\) (đã thu gọn)

\(A=\dfrac{3}{\sqrt{x}+3}\) (đã thu gọn)

\(A=1-\sqrt{x}\) (đã thu gọn)

\(A=x-2\sqrt{x}-1=\sqrt{x}\left(\sqrt{x}-2\right)-1\)

Phong Vũ Thành
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 10 2021 lúc 19:37

a: \(=2x^2-6x+x-3-20x+8x^2\)

\(=10x^2-25x-3\)

b: \(=x^2+4x+4-2\left(x^2-9\right)+10\)

\(=x^2+4x+14-2x^2+18\)

\(=-x^2+4x+32\)

SHI SUSU
Xem chi tiết
YangSu
26 tháng 5 2023 lúc 10:48

\(a,3x\left(x-2\right)-5x\left(1-x\right)-8\left(x^2-3\right)\)

\(=3x^2-6x-5x+5x^2-8x^2+24\)

\(=\left(3x^2+5x^2-8x^2\right)+\left(-6x-5x\right)+24\)

\(=0-11x+24\)

\(=-11x+24\)

\(b,\left(7x-3\right)\left(2x+1\right)-\left(5x-2\right)\left(x+4\right)-9x^2+17x\)

\(=14x^2+7x-6x-3-5x^2-20x+2x+8-9x^2+17x\)

\(=\left(14x^2-5x^2-9x^2\right)+\left(7x-6x-20x+2x+17x\right)+\left(-3+8\right)\)

\(=0+0+5\)

\(=5\)

Nguyen Minh Anh
Xem chi tiết
Akai Haruma
15 tháng 10 2021 lúc 11:23

Lời giải:

a.

$=-2x^5+10x^4+2424x^3-x^3-3=-2x^5+10x^4+2423x^3-3$

b.

$=(x-5y)^2+2(x-5y)(x+y)+(x+y)^2$

$=[(x-5y)+(x+y)]^2=(2x-4y)^2=4x^2-16xy+16y^2$

Trang Kieu
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 20:40

1:

a: \(\left(2x-5\right)^2-4x\left(x+3\right)\)

\(=4x^2-20x+25-4x^2-12x\)

=-32x+25

b: \(\left(x-2\right)^3-6\left(x+4\right)\left(x-4\right)-\left(x-2\right)\left(x^2+2x+4\right)\)

\(=x^3-6x^2+12x-8-\left(x^3-8\right)-6\left(x^2-16\right)\)

\(=-6x^2+12x-6x^2+96=-12x^2+12x+96\)

c: \(\left(x-1\right)^2-2\left(x-1\right)\left(x+2\right)+\left(x+2\right)^2+5\left(2x-3\right)\)

\(=\left(x-1-x-2\right)^2+5\left(2x-3\right)\)

\(=\left(-3\right)^2+5\left(2x-3\right)\)

\(=9+10x-15=10x-6\)

2: 

a: \(\left(2-3x\right)^2-5x\left(x-4\right)+4\left(x-1\right)\)

\(=9x^2-12x+4-5x^2+20x+4x-4\)

\(=4x^2+12x\)

b: \(\left(3-x\right)\left(x^2+3x+9\right)+\left(x-3\right)^3\)

\(=27-x^3+x^3-9x^2+27x-27\)

\(=-9x^2+27x\)

c: \(\left(x-4\right)^2\left(x+4\right)-\left(x-4\right)\left(x+4\right)^2+3\left(x^2-16\right)\)

\(=\left(x-4\right)\left(x+4\right)\left(x-4-x-4\right)+3\left(x^2-16\right)\)

\(=\left(x^2-16\right)\left(-8\right)+3\left(x^2-16\right)\)

\(=-5\left(x^2-16\right)=-5x^2+80\)

Nguyễn Đức Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2021 lúc 20:15

a) Ta có: \(\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\)

\(=x^2+2x+1-x^2+2x-1-3\left(x^2-1\right)\)

\(=4x-3x^2+3\)

\(=-3x^2+4x+3\)

b) Ta có: \(5\left(x+2\right)\left(x-2\right)-\dfrac{1}{2}\left(6-8x\right)^2+17\)

\(=5\left(x^2-4\right)-\dfrac{1}{2}\left(64x^2-96x+36\right)+17\)

\(=5x^2-20-32x^2+48x-16+17\)

\(=-27x^2+48x-19\)