tính giá trị của biểu thức b, biết b^2= c(a-b)-b(a-c)
Tính giá trị của biểu thức B biết: B^2 = c(a-b)- b(a-c) và a = -50, b-c =2
1.Biết a-2b=5, hãy tính giá trị của biểu thức :P=(3a-2b)/(2a+5)+(3b-a)/(b-5)
2.Cho a+b+c=0.Tính giá trị của các biểu thức sau:
A=1/(a^2+b^2-c^2)+1/(b^2+c^2-a^2)+1/(c^2+a^2-b^2)
P=3a-2b\2a+5 + 3b-a\b-5
=2a+a-2b\2a-5 + -a+2b+b\b-5
=2a+(a-2b)\2a-5 + -(a-2b)+b
=2a+5\2a-5 + -5+b\b-5
=-(2a-5)\(2a-5) + (b-5)\(b-5)
=-1+1=0
tính giá trị của biểu thức b, biết b^2= c(a-b)-b(a-c)
\(\frac{\frac{5}{22}+\frac{3}{13}-\frac{1}{2}}{\frac{4}{13}-\frac{2}{11}+\frac{3}{2}}\)
Giúp mình đi! Gấp lắm rồi! Huhuhu....hu! ><
b^2 = ac - bc - ba + bc
b^2 = ac - ba
b^2 = a(c-b)
Tính giá trị của biểu thức B biết: B^2=c.(a-c)-b.(a-c) và a=-50,b-c=2
https://olm.vn/hoi-dap/detail/238275950921.html
mình trả lời ở đó rồi, bạn vô xem nhé
Tính giá trị của biểu thức B biết: B2=c(a-b)-b(a-c)
\(B^2=c\left(a-b\right)-b\left(a-c\right)\\ B^2=ca-cb-ba+bc\\ B^2=\left(ca-ba\right)+\left(bc-bc\right)\\ B^2=a\left(c-b\right)\\ B=\sqrt{a\left(c-b\right)}\)
Làm tiếp khi thêm đề:
\(b-c=2\Rightarrow c-b=-2\)
\(B=\sqrt{a\left(c-b\right)}=\sqrt{\left(-50\right)\cdot\left(-2\right)}=\sqrt{100}=10\)
Giải:
B2=c(a-b)-b(a-c)
B2=ac-bc-ab-bc
B2=(ac-ab)-(bc-bc)
B2=a(c-b)
B=√a(c-b)
B=√-50.(-2)
B=√100
B=10
Chúc bạn học tốt!
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
\(D\left(2\right)=21a+9b-6a-4b\)
\(D\left(2\right)=\left(21a-6a\right)+\left(9b-4b\right)\)
\(D\left(2\right)=15a+5b\)
Mà: \(3a+b=18\Rightarrow b=18-3b\)
\(\Rightarrow D\left(2\right)=15a+5\left(18-3b\right)\)
\(D\left(2\right)=15a+90-15a\)
\(D\left(2\right)=90\)
Vậy: ...
Câu 4:
\(D\left(1\right)=4a+10b-b+2a\)
\(D\left(1\right)=\left(4a+2a\right)+\left(10b-b\right)\)
\(D\left(1\right)=6a+9b\)
Mà: \(2a+3b=12\Rightarrow a=\dfrac{12-3b}{2}\)
\(\Rightarrow D\left(1\right)=6\left(\dfrac{12-3b}{2}\right)+9b\)
\(D\left(1\right)=\dfrac{6\left(12-3b\right)}{2}+9b\)
\(D\left(1\right)=3\left(12-3b\right)+9b\)
\(D\left(1\right)=36-9b+9b\)
\(D\left(1\right)=36\)
Vậy: ...
Câu 3:
Sửa đề: \(C=5a-4b+7a-8b\)
\(C=\left(5a+7a\right)-\left(4b+8b\right)\)
\(C=12a-12b\)
\(C=12\left(a-b\right)\)
\(C=12\cdot8\)
\(C=96\)
Vậy: ...
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
4:
D=6a+9b=3(2a+3b)=36
5:
D=15a+5b=5(3a+b)=90
Câu 3: Tính giá trị của biểu thức C = 5a − 4b + 7a + 8 . Biết a-b=8.
Câu 4: Tính giá trị của biểu thức D =4a + 10b - b+ 2a. Biết 2a+3b=12
Câu 5: Tính giá trị của biểu thức D=21a + 9b — 6a — 4b. Biết 3a+b=18
Câu 5:
D=21a+9b-6a-4b
=21a-6a+9b-4b
=15a+5b
=5(3a+b)
\(=5\cdot18=90\)
Câu 4: D=4a+10b-b+2a
=4a+2a+10b-b
=6a+9b
=3(2a+3b)
\(=3\cdot12=36\)
Câu 3:
C=5a-4b+7a+8
=5a+7a-4b+8
=12a-12b+8b+8
=12(a-b)+8b+8
=8(a-b)+8b+8
=8a-8b+8b+8
=8a+8
a) Tìm giá trị nhỏ nhất của biểu thức \(x^2-8x+5\)
b) Cho \(a^3+b^3+c^3=3abc\) và \(a+b+c\) ≠ 0
Tính giá trị của biểu thức N =\(\dfrac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
a: \(x^2-8x+5\)
\(=x^2-8x+16-11\)
\(=\left(x-4\right)^2-11\ge-11\forall x\)
Dấu '=' xảy ra khi x-4=0
=>x=4
b: \(a^3+b^3+c^3=3bac\)
=>\(\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=0\)
=>\(\left(a+b+c\right)\left\lbrack\left(a+b\right)^2-c\left(a+b\right)+c^2\right\rbrack-3ab\left(a+b+c\right)=0\)
=>\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)=0\)
=>\(a^2+b^2+c^2-ab-ac-bc=0\)
=>\(2a^2+2b^2+2c^2-2ab-2ac-2bc=0\)
=>\(\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)
=>a=b=c
\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}\)
\(=\frac{a^2+a^2+a^2}{\left(a+a+a\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3}{3^2}=\frac13\)