a=(1+1/2+1/3+1/4+...+1/54).2.3.4.5...54 chứng minh rằng a chia hết cho 55
1. chứng minh: 55^n+1-55^n chia hết cho 54
2. chứng minh: 5^6-10^4 chia hết cho 54
3. chứng minh: n^2(n+1)+2n(n+1) luôn chia hết cho 6 với mọi số nguyên n
chứng minh rằng 55^n+1-55^n chia hết cho 54 ( với n là số tự nhiên )
\(55^{n+1}-55^n\)
\(=55^n.55-55^n\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Ta có: \(54⋮54\)
\(\Rightarrow55^n.54⋮54\)
\(\Rightarrow55^{n+1}-55^n⋮54\)
đpcm
\(\left(5n+2\right)^2-4\)
\(=\left(5n+2\right)^2+2^2\)
\(=\left(5n+2+2\right).\left(5n+2-2\right)\)
\(=\left(5n+4\right).\left(5n\right)\)
Vậy \(\left(5n+2\right)^2-4\)chia hết cho 5 với mọi số nguyên n
b) Cho biểu thức A = 1 + 3^2+3^4+...+3^100
Chứng minh rằng 8A – 26 chia hết cho 54.
\(A=1+3^2+3^4+...+3^{100}\)
\(9A=3^2+3^4+3^6+...+3^{102}\)
\(8A=3^{102}-1\)
\(\Rightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Vì \(3^{102}-27⋮3\)(1)
\(3^{102}-27⋮2\)(\(3^{102}-27\)là số chẵn ) (2)
\(3^{102}-27=9\left(3^{100}-3\right)\)\(\Rightarrow3^{102}-27⋮9\)(3)
Từ (1) , (2), (3) \(\Rightarrow8A-26⋮54\)\(\left(\left(2,3,9\right)=1\right)\)
vậy ...
\(A=1+3^2+3^4+...+3^{100}\)
\(\Leftrightarrow3^2A=3^2\left(1+3^2+3^4+....+3^{100}\right)\)
\(\Leftrightarrow9A=3^2+3^4+3^6+...+3^{102}\)
\(\Leftrightarrow9A-A=\left(3^2+3^4+3^6+....+3^{102}\right)-\left(1+3^2+3^4+...+3^{100}\right)\)
\(\Leftrightarrow8A=3^{102}-1\)
\(\Leftrightarrow8A-26=3^{102}-1-26=3^{102}-27\)
Ta có: \(3^{102}⋮3;27⋮3\Rightarrow3^{102}-27⋮3\left(1\right)\)
\(3^{102}-27⋮2\left(2\right)\)(3^102 -27 là số lẻ)
\(3^{102}-27=\left(3^2\right)^{51}-27=9^{51}-27⋮9\left(3\right)\)
(1)(2)(3) => 8A-26 chia hết cho 54 (đpcm)
Như các bạn đã trình bày: Chúng ta chứng minh được:
\(8A-26=3^{102}-27\)
Ta có: \(3^{102}-27⋮2\)( vì \(3^{102};27\)là số lẻ; hiệu 2 số lẻ là số chẵn )
và \(3^{102}-27=27\left(3^{99}-1\right)⋮27\)
vì ( 27; 2) = 1 và 27.2 = 54 nên: \(3^{102}-27⋮54\)
Chứng minh
a) 24n chia hết cho 15
b) 55n+1- 552 chia hết cho 54
Chứng minh 55^(n + 1) - 55^2 chia hết cho 54 (với n là số tự nhiên)
Lời giải:
$55^{n+1}-55^2=55^2[55^{n-1}-1]=55^2(55-1)(55^{n-2}+55^{n-3}+...+55+1)$
$=54.55^2(55^{n-2}+55^{n-3}+...+55+1)\vdots 54$
Ta có đpcm.
Chứng Minh rằng 55n+1-55n chia hết cho 54 với n là số tự nhiên
Giải
55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải:
Ta có ; 55^(n+1) -55^n
= 55^n.55 -55^n
=55^n( 55 - 1)
=55^n.54 luôn luôn chia hết cho 54 ( do tích có 1 thừa số là 54)
Giải
55 x { n + 1 } -55 x n
= 55 x n.55 -55 x n
= 55 x n { 55 - 1
55 x n.54 luôn luôn chia hết cho 54 { do tích thừa số là 54 }
Chứng minh rằng \(55^{n+1}-55^n\)chia hết cho 54 ( với n là số tự nhiên )
\(55^{n+1}-55^n\)
\(=55^n.55-55^n.1\)
\(=55^n.\left(55-1\right)\)
\(=55^n.54\)
Vì có 54 trong tích
=> 55n . 54 chia hết cho 54
=> Điều phải chứng minh
55n+1−55n = 55n.55−55n = 55n(55−1)=(55n.54)⋮54
- Vậy (55n+1−55n)⋮54
Hoặc thế này nhé p lấy bài nào cũng đc đều đúng cả
55^(n+1)-55^n=55^n.55-55^n
=55^n(55-1)
=55^n. 54
Vì 54 chia hết cho 54
Suy ra: 55^n. 54 chia hết cho 54
Vậy 55^(n+1)-55^n chia hết cho 54
1. Chứng minh rằng 55n+1 - 55n chia hết cho 54 ( với n là số tự nhiên )
2.CMR : n2 . ( n+1) + 2n . ( n+1) luôn chia hết cho 6 với mọi số nguyên n
1) \(55^{n+1}-55^n\) \(= 55^n . 55 - 55^n\)
\(= 55^n(55-1)\)
\(= 55^n . 54\)
\(= 55^n - 54 : 54\)
\(= 55^n\)
1 ta co 55n+1 - 55n = 55n(55-1)=55n .54 vi 54 chia het cho 54 => 55n.54 chia het cho 54
=> 55^n+1 -55^n chia het cho 4
1. Ta có 55n+1 - 55n = 55n . 55 - 55n
= 55n . ( 55 - 1)
= 55n . 54 chia hết cho 54
2. n2 . ( n + 1 ) + 2n . ( n + 1 ) = ( n + 1 ) . ( n2 + 2n )
= ( n + 1 ) . n . ( n + 2 )
= n . ( n + 1 ) . ( n + 2 )
Ta có : n . ( n + 1 ) chia hết cho 2 với mọi n (1)
n . ( n + 1 ) . ( n + 2 ) chia hết cho 3 với mọi n (2)
Từ (1) và (2) suy ra n . ( n + 1 ) . ( n + 2 ) chia hết cho 6 với mọi n
Hay n2 . ( n + 1 ) + 2n . ( n + 1 ) chia hết cho 6 với mọi n
Chứng minh :
a) ( n^3 - n ) chia hết cho 6 với mọi số nguyên n.
b) ( 55^n+1 - 55^n ) chia hết cho 54 với mọi số nguyên n.
a) n3 - n
= n.(n2 - 1)
= n.(n - 1).(n + 1)
Vì n.(n - 1).(n + 1) là tích 3 số nguyên liên tiếp
=> n.(n - 1).(n + 1) chia hết cho 2 và 3
Mà (2;3)=1 => n.(n - 1).(n + 1) chia hết cho 6
=> n3 - n chia hết cho 6 (đpcm)
b) 55n+1 - 55n
= 55n.55 - 55n
= 55n.(55 - 1)
= 55n.54 chia hết cho 54 (đpcm)