Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phương Phương
Bài 1 : Trên nửa đường tròn (O;R) đường kính BA. tâm O, lấy hai điểm M, E (M ≠ E ≠ A ≠ B) sao cho hai đường thẳng AM và BE cắt nhau tại điểm C nằm ngoài (O); AE cắt BM tại D. a) Chứng minh : MCED là một tứ giác nội tiếp và CD vuông góc với AB b) Gọi H là giao điểm của CD và AB. Chứng minh : BE.BC HB.BA c) Chứng minh các tiếp tuyến tại M và E của đường tròn (O) cắt nhau tại một điểm nằm trên đường thẳng CD. Bài 2 : Từ một điểm A bên ngoài đường tròn (O;R) dựng hai tiếp tuyến AB, AC và cát t...
Đọc tiếp

Những câu hỏi liên quan
tran quang vu
Xem chi tiết
Nguyễn Lê Phước Thịnh
16 tháng 12 2022 lúc 22:00

a: Xét tứ giác OAPC có

góc OAP+góc OCP=180 độ

nên OAPC là tứ giác nội tiếp

b: Xét (O) có

PC,PA là tiếp tuyến

nên PA=PC

mà OC=OA

nên OP là trung trực của AC

=>OP vuông góc với AC

Xét (O) có

QC,QB là các tiếp tuyến

nên QC=QB 

mà OB=OC

nên OQ là trung trực của BC

Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đo: ΔACB vuông tại C

Xét tứ giác CMON có

góc CMO=góc CNO=góc MCN=90 độ

nen CMON là hình chữ nhật

c: PA*BQ=PC*CQ=OC^2=OB*OA

bánh mì que
Xem chi tiết
Nguyễn Lê Phước Thịnh
30 tháng 11 2023 lúc 18:44

c: Gọi giao điểm của BC với Ax là K

BC\(\perp\)AC tại C

=>AC\(\perp\)BK tại K

=>ΔACK vuông tại C

\(\widehat{DKC}+\widehat{DAC}=90^0\)(ΔACK vuông tại C)

\(\widehat{DCK}+\widehat{DCA}=\widehat{KCA}=90^0\)

mà \(\widehat{DCA}=\widehat{DAC}\)(ΔDAC cân tại D)

nên \(\widehat{DKC}=\widehat{DCK}\)

=>DC=DK

mà DC=DA

nên DK=DA

=>D là trung điểm của AK

CH\(\perp\)AB

AK\(\perp\)AB

Do đó: CH//AK

Xét ΔOKD có CI//KD

nên \(\dfrac{CI}{KD}=\dfrac{OI}{OD}\left(1\right)\)

Xét ΔOAD có IH//AD

nên \(\dfrac{IH}{AD}=\dfrac{OI}{OD}\left(2\right)\)

Từ (1) và (2) suy ra \(\dfrac{CI}{KD}=\dfrac{IH}{AD}\)

mà KD=AD

nên CI=IH

=>I là trung điểm của CH

Ngoc Thanh
Xem chi tiết
Nguyễn Lê Phước Thịnh
1 tháng 2 2023 lúc 23:18

a: Xét tứ giác PAOM có

góc PAO+góc PMO=180 độ

=>PAOM là tứ giác nội tiếp

b: Xét (O) có

PA,PM là tiếp tuyến

nên PA=PM và OP là phân giác của góc MOA(1)

mà OA=OM

nên OP là trung trực của AM

=>OP vuông góc AM

Xét (O) có

QM,QB là tiếp tuyến

nên QM=QB và OQ là phân giác của góc MOB(2)

mà OM=OB

nên OQ là trung trực của MB

=>OQ vuông góc MB tại K

Từ (1), (2) suy ra góc POQ=1/2*180=90 độ

Xét tứ giác MIOK có

góc MIO=góc MKO=góc IOK=90 độ

=>MIOK là hình chữ nhật

Xét ΔOPQ vuông tại O có OM là đường cao

nên MP*MQ=OM^2=R^2

=>AP*QB=OM^2=R^2 ko đổi

Nguyễn Gia Huy
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 8 2023 lúc 19:25

a: góc CAO+góc CNO=90+90=180 độ

=>CAON nội tiếp đường tròn đường kính CO

Tâm là trung điểm của OC

Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 21:07

d. OF//BD nên \(\widehat{FOD}=\widehat{ODB}\)

Mà \(\widehat{ODB}=\widehat{ODF}\Rightarrow\widehat{FOD}=\widehat{ODF}\)

Do đó FOD cân tại F

\(\Rightarrow OF=FD\)

Áp dụng Talet: \(\dfrac{BD}{FD}=\dfrac{BD}{OF}=\dfrac{DH}{HF}\)

\(\Rightarrow\dfrac{BD}{DF}+\dfrac{DF}{HF}=\dfrac{DH}{HF}+\dfrac{DF}{HF}=\dfrac{DH+DF}{HF}=\dfrac{HF}{HF}=1\left(đpcm\right)\)

39. 9A Trần Thanh Trúc
Xem chi tiết
Nguyễn Lê Phước Thịnh
27 tháng 7 2023 lúc 21:40

a: góc CAO+góc CMO=180 độ

=>CAOM nội tiếp

góc DMO+góc DBO=180 độ

=>DMOB nội tiếp

b: Xét (O) có

CM,CA là tiếp tuyến

=>CM=CA và OC là phân giác của góc MOA(1)

Xét (O) có

DM,DB là tiếp tuyến

=>DM=DB và OD là phân giác của góc MOB(2)

Từ (1), (2) suy ra góc DOC=1/2*180=90 độ

Xét ΔDOC vuông tại O có OM là đường cao

nên CM*MD=OM^2

=>AC*BD=R^2

Huong Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 12 2021 lúc 14:57

a: Xét (O) có

CM là tiếp tuyến

CA là tiếp tuyến

Do đó: CM=CA

Xét (O) có

DB là tiếp tuyến

DM là tiếp tuyến

Do đó: DB=DM

Ta có: MC+MD=DC

nên DC=CA+DB

And see Hide
Xem chi tiết
Viet hung Nguyen
Xem chi tiết
Hiếu Minecaft
21 tháng 12 2021 lúc 7:29