Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 11 2017 lúc 18:18

(Các phần giải thích học sinh không phải trình bày).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Vì hệ số của y ở 2 pt đối nhau nên cộng từng vế của 2 pt).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (2; -3).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x ở 2 pt bằng nhau nên ta trừ từng vế của 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân cả hai vế của pt 2 với 2 để hệ số của x bằng nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của x bằng nhau nên ta trừ từng vế của 2 pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (3; -2).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

(Nhân hai vế pt 1 với 2, pt 2 với 3 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên cộng từng vế hai phương trình).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (-1; 0).

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 4 để hệ số của y đối nhau)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Hệ số của y đối nhau nên ta cộng từng vế 2pt)

Giải bài 20 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất (5; 3).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

Phạm Khánh Ly
Xem chi tiết
Minh Hiếu
16 tháng 1 2022 lúc 17:25

\(\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)

⇒ \(3x=-5\)

⇒ \(x=-\dfrac{5}{3}\)

ILoveMath
16 tháng 1 2022 lúc 17:27

\(a,\left\{{}\begin{matrix}2x-2y=-4\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-2y+x+2y=\left(-4\right)+\left(-1\right)\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=-5\\x+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\-\dfrac{5}{3}+2y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\2y=\dfrac{2}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{5}{3}\\y=\dfrac{1}{3}\end{matrix}\right.\)

\(b,\left\{{}\begin{matrix}3x+5y=11\\2x+5y=9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=11\\3x+5y-2x-5y=11-9\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3.2+5y=11\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6+5y=11\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5y=5\\x=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=1\\x=2\end{matrix}\right.\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
10 tháng 8 2018 lúc 3:25

(Các phần giải thích học sinh không phải trình bày).

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân 2 vế pt 1 với 3; nhân pt 2 với 2 để hệ số của y đối nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (hệ số của y đối nhau nên ta cộng từ vế 2 pt)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Vậy hệ phương trình có nghiệm duy nhất Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 1 với 2 để hệ số của y đối nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 ( lấy vế cộng vế hai phương trình)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình 0x = 27 vô nghiệm nên hệ phương trình vô nghiệm.

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Nhân hai vế pt 2 với 3 để hệ số của y bằng nhau)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (Trừ từng vế hai phương trình)

Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9

Phương trình 0x = 0 nghiệm đúng với mọi x.

Vậy hệ phương trình có vô số nghiệm dạng Giải bài 22 trang 19 SGK Toán 9 Tập 2 | Giải toán lớp 9 (x ∈ R).

Kiến thức áp dụng

Giải hệ phương trình bằng phương pháp cộng đại số

1) Nhân hai vế của phương trình với mỗi hệ số thích hợp (nếu cần) sao cho hệ số của một trong hai ẩn bằng nhau hoặc đối nhau.

2) Áp dụng quy tắc cộng đại số để được hệ phương trình mới, trong đó có một phương trình mà hệ số của một trong hai ẩn bằng 0 (tức là phương trình một ẩn).

3) Giải phương trình một ẩn vừa thu được rồi suy ra nghiệm của hệ đã cho và kết luận.

huong giang
Xem chi tiết
Dark_Hole
4 tháng 3 2022 lúc 21:16

a, b và c có thể dùng phương pháp thế hoặc cộng trừ đại số

\(a,\left\{{}\begin{matrix}x=1-y\\1-y-y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\1-2y=-5\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\2y=6\end{matrix}\right.=>\left\{{}\begin{matrix}x=1-y\\y=3\end{matrix}\right.=>\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

Kết luận hpt có 1 nghiệm duy nhất (x;y)=(-2;3)

b và c làm tương tự

Nguyễn Ngọc Huy Toàn
4 tháng 3 2022 lúc 21:16

a.\(\Leftrightarrow\left\{{}\begin{matrix}2x=-4\\x-y=-5\end{matrix}\right.\) ( cộng đại số bạn nhé )

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\-2-y=-5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=3\end{matrix}\right.\)

b.\(\Leftrightarrow\left\{{}\begin{matrix}3x=6\\x-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\2-2y=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{1}{2}\end{matrix}\right.\)

c.\(\Leftrightarrow\left\{{}\begin{matrix}4x+6y=10\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}13x=13\\9x-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\9.1-6y=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=1\end{matrix}\right.\)

 

YangSu
4 tháng 3 2022 lúc 21:18

a, \(\left\{{}\begin{matrix}x+y=1\\x-y=-5\end{matrix}\right.\)

\(\Leftrightarrow x+y+x-y=-4\)

\(\Leftrightarrow2x=-4\)

\(\Leftrightarrow x=-2\)

Thay \(x=-2\) vào \(x+y=1\)\(\Leftrightarrow-2+y=1\)\(\Leftrightarrow y=3\)

Vậy \(x=-2;y=3\)

Quỳnh Anh Nguyễn
Xem chi tiết
Quỳnh Anh Nguyễn
13 tháng 1 2021 lúc 15:59

giúp mình nhé

Mèo Dương
Xem chi tiết

a: \(\left\{{}\begin{matrix}3x-2y=4\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3x-2y=4\\4x+2y=10\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}7x=14\\2x+y=5\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=2\\y=5-2x=5-2\cdot2=1\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}-x+2y=2\\2x-y=-1\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}-2x+4y=4\\2x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y=3\\x-2y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}y=1\\x=-2+2y=-2+2\cdot1=0\end{matrix}\right.\)

c: \(\left\{{}\begin{matrix}2x-y=13\\y-5=-7\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}2x-y=13\\y=-7+5=-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y+13=-2+13=11\\y=-2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{11}{2}\\y=-2\end{matrix}\right.\)

d: \(\left\{{}\begin{matrix}3x+y=8\\2x-3y=1\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}9x+3y=24\\2x-3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}11x=25\\3x+y=8\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=\dfrac{25}{11}\\y=8-3x=8-3\cdot\dfrac{25}{11}=8-\dfrac{75}{11}=\dfrac{13}{11}\end{matrix}\right.\)

Xem chi tiết

e.

\(\left\{{}\begin{matrix}2x-3y+5=0\\3x+5y-21=0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}10x-15y=-25\\9x+15y=63\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}19x=38\\3x+5y=21\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=\dfrac{21-3x}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=3\end{matrix}\right.\)

f.

\(\left\{{}\begin{matrix}x-y\sqrt{2}=0\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x-y\sqrt{2}=0\\4x+y\sqrt{2}=5\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x=5\sqrt{2}\\2x\sqrt{2}+y=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=5-2x\sqrt{2}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\sqrt{2}\\y=1\end{matrix}\right.\)

a.

\(\Leftrightarrow\left\{{}\begin{matrix}5x=-25\\3x-5y=-30\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=\dfrac{3x+30}{5}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\end{matrix}\right.\)

b.

\(\Leftrightarrow\left\{{}\begin{matrix}8x-6y=-10\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}17x=-34\\9x+6y=-24\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=\dfrac{-24-9x}{6}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-2\\y=-1\end{matrix}\right.\)

c.

\(\left\{{}\begin{matrix}3x+3y=9\\4x-2y=-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y=3\\2x-y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x=2\\2x-y=-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=2x+1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{2}{3}\\y=\dfrac{7}{3}\end{matrix}\right.\)

d.

\(\left\{{}\begin{matrix}5x-4y=32\\6x+2y=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\12x+4y=36\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}5x-4y=32\\17x=68\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=\dfrac{3x-32}{4}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=-3\end{matrix}\right.\)

trần xuân quyến
Xem chi tiết
Nguyễn Lê Nhật Linh
Xem chi tiết
Ngu Ngu Ngu
29 tháng 5 2017 lúc 9:44

Giải:

Lấy \(2x\left(1\right)-\left(2\right)\Rightarrow x^2+2xy+y^2-4y-4x+4=0\)

\(\Leftrightarrow\left(x+y\right)^2-4\left(x+y\right)+4=0\Leftrightarrow x+y=2\)

Giải ra được hệ phương trình có nghiệm duy nhất là \(\left(1;1\right)\)

Thanh Hằng Nguyễn
27 tháng 5 2017 lúc 20:30

Câu hỏi của Pham Hoàng Lâm - Toán lớp 9 - Học toán với OnlineMath