cho hình vuông ABCD. điểm M thuộc cạnh AB,N thuộc cạnh CD, sao cho góc MBN=45 độ. gọi giao điểm cuarBM,BN với AC theo thứ tự là E và F. CMR:
a, BCNE nội tiếp
b, tam giác BFM là tam giác gì ?
Cho hình vuông ABCD có độ dài cạnh bằng a. Trên cạnh AD và CD lần lượt lấy các điểm M và N saoo cho góc MBN bằng 45 độ, BM và BN cắt AC theo thứ tự tại E và F.
a) Chứng minh MF vuông góc với BN.
b) Gọi H là giao điểm của MF với NE và I là giao điểm của BH với MN. Tính độ dài đoạn BI theo a.
c) Tìm vị trí của M và N sao cho diện tích tam giác MDN lớn nhất.
Cho hình vuông ABCD cạnh có độ dài bằng a. Trên cạnh AD lấy điểm M và cạnh CD lấy điểm N sao cho góc MBN = 45°. Gọi E và F lần lượt là giao điểm của BM, BN với AC. a/ Chứng minh: Tứ giác BENC nội tiếp, từ đó suy ra NE vuông góc với BM b/ Gọi I là giao điểm của NE và MF. Chứng minh: BI vuông góc với MN. c/ Tìm vị trí của M và N để diện tích tam giác MDN lớn nhất. Tính diện tích lớn nhất đó theo a.
a.
DO ABCD là hình vuông \(\Rightarrow\widehat{ACD}=45^0\)
\(\Rightarrow\widehat{ACD}=\widehat{EBN}\)
Mà \(\widehat{ACD}\) và \(\widehat{EBN}\) cùng chắn EN
\(\Rightarrow\) Tứ giác BENC nội tiếp
\(\Rightarrow\widehat{BEN}+\widehat{BCN}=180^0\)
\(\Rightarrow\widehat{BEN}=180^0-\widehat{BCN}=180^0-90^0=90^0\)
\(\Rightarrow NE\perp BM\) tại E
b.
Tương tự ta có tứ giác ABFM nội tiếp (\(\widehat{MAF}=\widehat{MBF}=45^0\) cùng chắn MF)
\(\Rightarrow\widehat{BFM}+\widehat{BAM}=180^0\)
\(\Rightarrow\widehat{BFM}=90^0\Rightarrow MF\perp BN\)
\(\Rightarrow I\) là trực tâm của tam giác BMN
\(\Rightarrow BI\perp MN\)
c.
Gọi H là giao điểm BI và MN
Do E và F cùng nhìn MN dưới 1 góc vuông
\(\Rightarrow\) Tứ giác EFMN nội tiếp
\(\Rightarrow\widehat{EMN}+\widehat{EFN}=180^0\)
Mà \(\widehat{EFN}+\widehat{EFB}=180^0\)
\(\Rightarrow\widehat{EMN}=\widehat{EFB}\)
Lại có tứ giác ABFM nội tiếp (A và F cùng nhìn BM dưới 1 góc vuông)
\(\Rightarrow\widehat{EFB}=\widehat{AMB}\) (cùng chắn AB)
\(\Rightarrow\widehat{EMN}=\widehat{AMB}\)
\(\Rightarrow\Delta_VAMB=\Delta_VHMB\left(ch-gn\right)\)
\(\Rightarrow AM=HM\)
Đồng thời suy ra \(AB=BH\Rightarrow BH=BC\) (do AB=BC)
Theo Pitago: \(\left\{{}\begin{matrix}HN=\sqrt{BN^2-BH^2}\\CN=\sqrt{BN^2-BC^2}\end{matrix}\right.\) \(\Rightarrow CN=HN\)
\(\Rightarrow AM+CN=MH+NH=MN\)
\(\Rightarrow MD+DN+MN=MD+DN+AM+CN=AD+CD=2a\)
Pitago: \(MN^2=DM^2+DN^2\ge\dfrac{1}{2}\left(DM+DN\right)^2\Rightarrow MN\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a-\left(DM+DN\right)\ge\dfrac{\sqrt{2}}{2}\left(DM+DN\right)\)
\(\Rightarrow2a\ge\left(\dfrac{2+\sqrt{2}}{2}\right)\left(DM+DN\right)\ge\left(2+\sqrt{2}\right).\sqrt{DM.DN}\)
\(\Rightarrow DM.DN\le\left(6-4\sqrt{2}\right)a^2\)
\(\Rightarrow S_{MDN}=\dfrac{1}{2}DM.DN\le\left(3-2\sqrt{2}\right)a^2\)
Dấu "=" xảy ra khi \(DM=DN=\left(\sqrt{6}-\sqrt{2}\right)a\)
Cho hình vuông ABCD cạnh a. Trên hai cạnh
AD và CD lần lượt lấy các điểm M và N sao cho góc MBN =45 độ . BM và BN cắt AC theo thứ tự ở E và F. Chứng minh các tứ giác BENC và BFMA nội tiếp
Cho hình vuông $ABCD$ cạnh $a$. Trên hai cạnh $AD$ và $CD$ lần lượt lấy các điểm $M$ và $N$ sao cho $\widehat{MBN}={45}^\circ$. $BM$ và $BN$ cắt $AC$ theo thứ tự tại $E$ và $F$.
a) Chứng minh $BNNC$ và $BFMA$ là các tứ giác nội tiếp.
b) Chứng minh $MEFN$ là tứ giác nội tiếp.
c) Gọi $H$ là giao điểm của $MF$ và $NE$, $I$ là giao điểm của $BH$ và $MN$. Tính độ dài đoạn $BI$ theo a.
Vì: FBM=FAM=45 độ nên BFMA là tứ giác nội tiếp
tương tự có đpcm
b, ta có:
MFN=DAB=90
NEM=BCD=90
=> nội tiếp
c, theo câu b ta có:
MNB=BEC=BNC nên: NB là phân giác góc INC
thấy ngay H là trực tâm tam giác BMN nên: BI vuông góc MN
do đó áp dụng tính chất đường phân giác ta được BI=BC=a.
Chứng minh góc EBN = góc ECN = 450
=> Tứ giác BENC nội tiếp (đpcm)
Cho hình vuông ABCD cạnh a. Trên hai cạnh AD và CD lần lượt lấy các điểm M và N sao cho góc MBN = 45 độ. MB và BN cắt AC theo thứ tự tại E và F
a, C/m các tứ giác BENC và BFMA nội tiếp được trong một đường tròn
b, C/tỏ MEFN cũng là tứ giác nội tiếp
c, Gọi H là giao điểm của MF và NE, I là giao điểm BH và MN. Tính độ dài đoạn BI theo a
1) Cho tam giác ABC, điểm I thuộc đường trung tuyến AM. Gọi E là giao điểm của BI và AC, F là giao điểm của CI và AB. G là trung điểm BF, H là trung điểm CE. CMR: EF//BC
2) Cho hình thang ABCD (AB//CD) có AB=12, CD=15. Gọi M là trung điểm AB, E là giao điểm CM và AD, F là giao điểm của DM và BC. Tính độ dài EF
3) Cho hình bình hành ABCD, E thuộc AD, F thuộc AB, I thuộc AC. Gọi M là giao điểm FI và CD, K là giao điểm EI và BC. CMR: MK//EF
4) Cho tam giác ABC, AB=10, AC=15, 1 đường thẳng đi qua điểm M thuộc cạnh AB và song song với BC cắt AC ở N sao cho AN=BM. Tính độ dài AM sao cho AM=BN
5) Cho tam giác ABC có AB<AC, đường phân giác AD, lấy I thuộc BC sao cho BI=2 IC. Qua I kẻ đường thẳng song song với AD cắt AC và AB theo thứ tự ở E và K. CM BK= 2 CE
1. Cho tam giác ABC. Điểm D thuộc cạnh AB, điểm E thuộc cạnh AC sao cho
BD = CE. Gọi I, K, M, N theo thứ tự là trung điểm của BE, CD, BC, DE.
a. Tứ giác MINK là hình gì? Vì sao?
b. Chứng minh rằng IK vuông góc với tia phân giác At của góc A.
2. Cho tam giác đều ABC. Từ một điểm M trên cạnh AB vẽ hai đường thẳng
song song với hai cạnh AC, BC, chúng lần lượt cắt BC, AC tại D và E. Tìm vị trí của
M trên cạnh AB để độ dài đoạn DE đạt giá trị nhỏ nhất.
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp
$M\in AC$ thì $BM$ cắt $AC$ tại $M$ luôn rồi bạn chứ sao là điểm E được?
Bạn xem lại đề.
cho hình vuông ABCD có độ dài là a lấy M và N trên cạnh AC, DC sao cho góc MBN bằng 45 độ , BM,BN cắt AC tại E và F
a, chứng minh 3 tứ giác ABFM, BCNE, MEFN nội tiếp