Cho hình vuông cạnh a. Trên các cạnh AD và CD lần lượt lấy 2 điểm M và N sao cho góc MBN = 450. BM và BN cắt AC theo thứ tự ở E và F.
a) Chứng tỏ M, E, F, N cùng thuộc 1 đường tròn
b) MF, NE cắt nhau tại H; BH cắt MN tại I. Tính độ dài BI theo a.
c) Tìm vị trí của M và N sao cho diện tích tam giác MDN lớn nhất.
p/s: các bn giải giúp mk nha, ko cần vẽ hình đâu!!!
Trên các cạnh BC và CD của hình vuông ABCD lấy các điểm E và F sao cho góc EAF = 45 độ. Các đoạn thẳng AE,AF cắt BD theo thứ tự tại H và K. Chứng minh tứ giác EHKF nội tiếp
Trên các cạnh BC và CD của hình vuông ABCD lấy các điểm E và F sao cho góc EAF 45 độ. Các đoạn thẳng AE,AF cắt BD theo thứ tự tại H và K. Chứng minh tứ giác EHKF nội tiếp
cho hình vuông ABCD. điểm M thuộc cạnh AB,N thuộc cạnh CD, sao cho góc MBN=45 độ. gọi giao điểm cuarBM,BN với AC theo thứ tự là E và F. CMR:
a, BCNE nội tiếp
b, tam giác BFM là tam giác gì ?
cho hình vuông ABCD trên các cạnh BC và CD lần lượt lấy các điểm E và F sao cho góc EAF=45 độ. Gọi P và Q theo thứ tự là giao điểm của các đoạn EA, AF với đường chéo BD. chứng minh rằng tam giác AQE vuông cân.
Giải bài toán hình lớp 9 Cho hình thang ABCD (AB//CD) nội tiếp (O) . Các đường chéo AC,BD cắt nhau tại E , các cạnh bên AD,BC kéo dài cắt nhau tại F. a) Chứng minh tam giác OAC= tam giác OBD b) Chứng minh tứ giác ADOE và tứ giác AOFC nội tiếp c) Gọi M,N theo thứ tự là trung điểm của BD,AC và P là hình chiếu của B lên dường thẳng CD.Chứng minh tứ giác MNCP là hình bình hành d) Cho góc DOC=120 độ , góc AOB=90 độ , tính diện tích tứ giác ABCD theo R
Cho tam giác ABC có AB > AC > BC. trên các cạnh AB, AC lấy lần lượt hai điểm M và N Sao cho BM = BC = CN. Gọi I là tâm đường tròn nội tiếp tam giác ABC. AI cắt đường tròn ngoại tiếp các tam giác ANM và ABC lần lượt tại E và F.
a) Chứng minh tứ giác AMIC nội tiếp.
b) So sánh IE và IF
Cho tam giác ABC nội tiếp (O) đường kính AB (AC < BC). Trên dây CB lấy điểm H (với H khác C và B). AH cắt đường tròn tại điểm thứ hai là D. Kẻ HQ vuông góc với AB (với Q thuộc AB)
a, Chứng minh tứ giác BDHQ nội tiếp
b, Biết CQ cắt (O) tại điểm thứ hai F, chứng minh DF // HQ
c, Chứng minh H cách đều các đường thẳng CD, CQ và DQ
d, Gọi M, N lần lượt là hình chiếu của F trên AC và CB. Chứng minh MN, AB, DF đồng quy
Cho tứ giác ABCD nội tiếp đường tròn (O) sao cho điểm O nằm trong tứ giác ABCD và AB<CD. AC cắt BD tại E.
a) Chứng minh EA.EC=EB.ED
b) Gọi K trung điểm BC. Đường thẳng qua E và vuông góc OE cắt AD và BC lần lượt tại M,N. Chứng minh tứ giác ENKO nội tiếp
c) Chứng minh E trung điểm MN
d) Qua D kẻ đường vuông góc với AD. Đường thẳng này cắt đường thẳng vuông góc BC tại C ở F. Chứng minh E,O,F thẳng hàng