Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Win Nguyen
Xem chi tiết
Vũ Đoàn
11 tháng 2 2018 lúc 19:31

bđt cần c/m <=>

\(\frac{1}{\left(a+c-b-c\right)^2}+\frac{\left(b+c\right)^2}{\left(a+c\right)^2\left(b+c\right)^2}+\frac{\left(a+c\right)^2}{\left(b+c\right)^2\left(a+c\right)^2}\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2\ge4\\ \)

\(\frac{1}{\left(a+c\right)^2+\left(b+c\right)^2-2}+\left(b+c\right)^2+\left(a+c\right)^2-2\ge2\)(đúng , theo cô-si)

ok

Nguyễn Thị Kim Tuyến
Xem chi tiết
Kudo Shinichi
16 tháng 10 2019 lúc 20:42

Áp dụng BĐT Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng BĐT Cauchy ta có : \(a+b\ge2\sqrt{ab}\)
\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có ;

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2)  suy ra

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

Trần Quốc Tuấn hi
Xem chi tiết
Kudo Shinichi
3 tháng 11 2019 lúc 17:24

Áp dụng bđt Cauchy ta có : \(\frac{1}{a}+\frac{1}{b}\ge\frac{2}{\sqrt{ab}}\Rightarrow\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{\sqrt{ab}}{2}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VP\le4\left(\frac{\sqrt{ab}+\sqrt{bc}+\sqrt{ac}}{2}\right)=2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(1\right)\)

Áp dụng bđt Cauchy ta cso :
\(a+b\ge2\sqrt{ab}\)

\(\Rightarrow\left(a+b+\frac{1}{2}\right)^2\ge\left(2\sqrt{ab}+\frac{1}{2}\right)^2\ge2.2\sqrt{ab}.\frac{1}{2}=2\sqrt{ab}\)

Thiết lập tương tự và thu lại ta có :

\(\Rightarrow VT\ge2\left(\sqrt{ab}+\sqrt{bc}+\sqrt{ac}\right)\left(2\right)\)

Từ (1) và (2) 

\(VT\ge VP\)

\(\Rightarrowđpcm\)

Chúc bạn học tốt !!!

Khách vãng lai đã xóa
senorita
Xem chi tiết
Incursion_03
3 tháng 4 2019 lúc 11:27

Áp dụng bđt \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\left(x;y>0\right)\) (tự c/m ha)

\(\frac{7}{a}+\frac{5}{b}+\frac{4}{c}=\left(\frac{4}{a}+\frac{4}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+\left(\frac{3}{a}+\frac{3}{c}\right)\)

                               \(=4\left(\frac{1}{a}+\frac{1}{b}\right)+\left(\frac{1}{b}+\frac{1}{c}\right)+3\left(\frac{1}{a}+\frac{1}{c}\right)\)

                               \(\ge4.\frac{4}{a+b}+\frac{4}{b+c}+3.\frac{4}{a+c}=4\left(\frac{4}{a+b}+\frac{1}{b+c}+\frac{3}{c+a}\right)\)

Dấu "=" <=> a = b = c

tth_new
Xem chi tiết
tíntiếnngân
16 tháng 4 2019 lúc 10:15

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)

\(=\frac{b}{a}+\frac{c}{a}+\frac{c}{b}+\frac{a}{b}+\frac{a}{c}+\frac{b}{c}\)

\(=\left(\frac{a}{b}+\frac{b}{a}\right)+\left(\frac{a}{c}+\frac{c}{a}\right)+\left(\frac{b}{c}+\frac{c}{b}\right)\)

mà \(\frac{a}{b}+\frac{b}{a}\ge2\)(dễ chứng minh) 

chứng minh tương tự ta có

\(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\)\(\ge\)6

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge6^2=36\)(2)    (a>0; b>0; c>0)

tiếp theo chứng minh

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18\ge2\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

\(18a^2+18b^2+18c^2\ge2ab+2bc+2ca\)

\(16\left(a^2+b^2+c^2\right)+\left(a^2-2ab+b^2\right)+\left(a^2-2ac+c^2\right)+\left(b^2-2bc+c^2\right)\ge0\)

\(16\left(a^2+b^2+c^2\right)+\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\ge0\)   (bất đẳng thức luôn đúng )

suy ra  bất đẳng thức

\(36\ge4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)luôn đúng  (2)

từ (1) và (2) suy ra

\(\left(\frac{\left(b+c\right)}{a}+\frac{\left(c+a\right)}{b}+\frac{\left(a+b\right)}{c}\right)^2\ge\text{​​}\text{​​36}\ge\)\(4\left(ab+bc+ca\right)\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)\)

Vũ Thu An
Xem chi tiết
Nguyễn Võ Anh Nguyên
31 tháng 7 2017 lúc 20:50

Áp dụng BĐT Schwarz ta có:

\(\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge\frac{\left(2\left(a+b+c\right)\right)^2}{a+b+c}=\frac{4\left(a+b+c\right)^2}{a+b+c}=4\left(a+b+c\right)\)

Dấu ''='' xảy ra bạn tự giải nha.

hung
3 tháng 8 2017 lúc 9:02

bạn có thể giải rõ dc ko 

Vũ Thu An
4 tháng 8 2017 lúc 16:16

xin lỗi bạn nhưng mình chưa học bất đẳng thức này nên mình không hiểu cách giải của bạn cho lắm.

Hoàng Quốc Tuấn
Xem chi tiết
Trần Quốc Lộc
21 tháng 8 2019 lúc 10:42

\(\frac{\left(a+b\right)^2}{c}+4c\ge2\sqrt{\frac{\left(a+b\right)^2}{c}\cdot4c}=4\left(a+b\right)\\ \frac{\left(b+c\right)^2}{a}+4a\ge2\sqrt{\frac{\left(b+c\right)^2}{a}\cdot4a}=4\left(b+c\right)\\ \frac{\left(c+a\right)^2}{b}+4b\ge2\sqrt{\frac{\left(c+a\right)^2}{b}\cdot4b}=4\left(c+a\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}+4\left(a+b+c\right)\ge8\left(a+b+c\right)\\ \Rightarrow\frac{\left(a+b\right)^2}{c}+\frac{\left(b+c\right)^2}{a}+\frac{\left(c+a\right)^2}{b}\ge4\left(a+b+c\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Lưu Hải Dương
Xem chi tiết
Rồng Đom Đóm
29 tháng 4 2019 lúc 21:05

Không mất tính tổng quát giả sử \(0\le\)a<b<c

Ta có:\(ab+bc+ca\ge bc\)

\(\frac{1}{\left(a-b\right)^2}=\frac{1}{\left(b-a\right)^2}\ge\frac{1}{b^2}\)

TT\(\Rightarrow\frac{1}{\left(c-a\right)^2}\ge\frac{1}{c^2}\)\(\Rightarrow VT\ge bc\left(\frac{1}{b^2}+\frac{1}{\left(b-c\right)^2}+\frac{1}{c^2}\right)\)

\(VT\ge\frac{b^2+c^2}{bc}+\frac{bc}{\left(b-c\right)^2}\)

Đặt \(b^2+c^2=x;bc=y\)

\(\Rightarrow VT\ge\frac{x}{y}+\frac{y}{x-2y}\)

Ta cm:\(\frac{x}{y}+\frac{y}{x-2y}\ge4\)

\(\Leftrightarrow x^2-2xy+y^2\ge4xy-8y^2\)

\(\Leftrightarrow\left(x-3y\right)^2\ge0\left(real\right)\)

=>đpcm

"="<=>a=0;\(b^2+c^2=3xy\) và các hoán vị

Nguyen
29 tháng 4 2019 lúc 15:24

Áp dụng BĐT Svarxơ:

\(\left(ab+bc+ca\right).\Sigma\frac{1}{\left(a-b\right)^2}\ge\left(ab+bc+ca\right).\frac{9}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\)

Ta cần c/m:

\(\frac{9\left(ab+bc+ca\right)}{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}\ge4\)

\(\Rightarrow9\left(ab+bc+ca\right)\ge4\left[2\left(a^2+b^2+c^2\right)-2\left(ab+bc+ca\right)\right]\)

\(\Leftrightarrow17\left(ab+bc+ca\right)\ge8\left(a^2+b^2+c^2\right)\)

Bt làm đến đây thôi.

Nguyễn Việt Lâm Làm tiếp với.

Lê Nguyễn Minh Châu
Xem chi tiết