Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hi HI Hi
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 12 2021 lúc 22:24

\(C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\\ B=-\left(x^2-6x+9\right)-2=-\left(x-3\right)^2-2\le-2\\ B_{max}=-2\Leftrightarrow x=3\)

Koro-sensei
22 tháng 12 2021 lúc 22:35

C = 4x - x2 + 3 = - x+ 4x + 3 = -x2 + 2x2 - 4 + 7 = - (x2 -2x2 + 4) + 7

C = - (x - 2)2 +7 \(\le\) 7

Dấu "=" <=> x - 2 = 0 <=> x = 2

Vậy gtln của C = 7 khi x = 2 

B = - x+ 6x - 11 = - x2 + 2x3 - 9 - 2 = - (x2 - 2x3 + 9) - 2

B = - (x - 3)2 - 2 \(\le\) - 2

Dấu "=" <=> x - 3 = 0 <=> x = 3

Vậy gtln của B = -2 khi x = 3

hoàng minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 1 2023 lúc 8:24

a: -x^2<=0

=>-x^2+1<=1

=>A<=1

Dấu = xảy ra khi x=0

b: (x+1)^2>=0

=>-2(x+1)^2<=0

=>B<=8

Dấu = xảy ra khi x=-1

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 1 2019 lúc 15:05

Ta có

Q   =   8   –   8 x   –   x 2     =   - x 2   –   8 x   –   16   +   16   +   8   =   - ( x   +   4 ) 2   +   24     =   24   –   ( x   +   4 ) 2

 

Nhận thấy ( x   +   4 ) 2   ≥   0 ; Ɐx

=>   24   –   ( x   +   4 ) 2   ≤   24

Dấu “=” xẩy ra khi ( x   +   4 ) 2   =   0 ó x = -4

Giá trị lớn nhất của Q là 24 khi x = -4

Đáp án cần chọn là: D

Khánh Linh
Xem chi tiết
Lấp La Lấp Lánh
30 tháng 8 2021 lúc 21:57

a) \(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(minA=-3\Leftrightarrow x=2\)

b) \(B=-x^2-8x+5=-\left(x+4\right)^2+21\le21\)

\(maxB=21\Leftrightarrow x=-4\)

c) \(C=2x^2-8x+19=2\left(x-2\right)^2+11\ge11\)

\(minC=11\Leftrightarrow x=2\)

d) \(D=-3x^2-6x+1=-3\left(x+1\right)^2+4\le4\)

\(maxD=4\Leftrightarrow x=-1\)

Rin Huỳnh
30 tháng 8 2021 lúc 21:54

a) A = (x-2)^2 - 3 >= -3

--> A nhỏ nhất bằng -3

 <=> x = 2

Rin Huỳnh
30 tháng 8 2021 lúc 21:56

b) B = -(x+4)^2 + 21 <= 21

--> B lớn nhất bằng 21

<=> x = -4

Tuyết Ly
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 7:58

\(a,=x^2-8x+16+1=\left(x-4\right)^2+1\ge1\)

Dấu \("="\Leftrightarrow x=4\)

\(b,=\left(4x^2-12x+9\right)+4=\left(2x-3\right)^2+4\ge4\)

Dấu \("="\Leftrightarrow x=\dfrac{3}{2}\)

\(c,=\left(9x^2-2\cdot3\cdot\dfrac{1}{3}x+\dfrac{1}{9}\right)+\dfrac{26}{9}=\left(3x-\dfrac{1}{3}\right)^2+\dfrac{26}{9}\ge\dfrac{26}{9}\)

Dấu \("="\Leftrightarrow3x=\dfrac{1}{3}\Leftrightarrow x=\dfrac{1}{9}\)

ngọc hân
Xem chi tiết
Nguyễn Huy Tú
18 tháng 7 2021 lúc 15:43

undefinedundefined

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:20

Bài 6:

a) Ta có: \(A=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x-3\right)^2-2\le-2\forall x\)

Dấu '=' xảy ra khi x=3

b) Ta có: \(B=-x^2-8x+5\)

\(=-\left(x^2+8x-5\right)\)

\(=-\left(x^2+8x+16-21\right)\)

\(=-\left(x+4\right)^2+21\le21\forall x\)

Dấu '=' xảy ra khi x=-4

c) Ta có: \(C=-x^2+4x+1\)

\(=-\left(x^2-4x-1\right)\)

\(=-\left(x^2-4x+4-5\right)\)

\(=-\left(x-2\right)^2+5\le5\forall x\)

Dấu '=' xảy ra khi x=2

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:21

Bài 7:

a) Ta có: \(x^2-6x+11\)

\(=x^2-6x+9+2\)

\(=\left(x-3\right)^2+2\ge2\forall x\)

Dấu '=' xảy ra khi x=3

Nè Munz
Xem chi tiết
Yeutoanhoc
27 tháng 8 2021 lúc 9:17

`A=x^2-4x+y^2-8y+6`

`A=x^2-4x+4+y^2-8y+16-14`

`A=(x-2)^2+(y-4)^2-14`

VÌ `(x-2)^2+(y-4)^2>=0`

`=>(x-2)^2+(y-4)^2-14>=-14`

`=>A>=-14`

Dấu "=" xảy ra khi `x-2=0,y-4=0<=>{(x=2),(y=4):}`

Nguyền Hoàng Minh
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 11 2023 lúc 21:46

Bài 1:

a: \(A=x^2+2x+4\)

\(=x^2+2x+1+3\)

\(=\left(x+1\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

Vậy: \(A_{min}=3\) khi x=-1

b: \(B=x^2-20x+101\)

\(=x^2-20x+100+1\)

\(=\left(x-10\right)^2+1>=1\forall x\)

Dấu '=' xảy ra khi x-10=0

=>x=10

Vậy: \(B_{min}=1\) khi x=10

c: \(C=x^2-2x+y^2+4y+8\)

\(=x^2-2x+1+y^2+4y+4+3\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+3>=3\forall x\)

Dấu '=' xảy ra khi x-1=0 và y+2=0

=>x=1 và y=-2

Vậy: \(C_{min}=3\) khi (x,y)=(1;-2)

Bài 2:

a: \(A=5-8x-x^2\)

\(=-\left(x^2+8x\right)+5\)

\(=-\left(x^2+8x+16-16\right)+5\)

\(=-\left(x+4\right)^2+16+5=-\left(x+4\right)^2+21< =21\forall x\)

Dấu '=' xảy ra khi x+4=0

=>x=-4

b: \(B=x-x^2\)

\(=-\left(x^2-x\right)\)

\(=-\left(x^2-x+\dfrac{1}{4}-\dfrac{1}{4}\right)\)

\(=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}< =\dfrac{1}{4}\forall x\)

Dấu '=' xảy ra khi \(x-\dfrac{1}{2}=0\)

=>\(x=\dfrac{1}{2}\)

c: \(C=4x-x^2+3\)

\(=-x^2+4x-4+7\)

\(=-\left(x^2-4x+4\right)+7\)

\(=-\left(x-2\right)^2+7< =7\forall x\)

Dấu '=' xảy ra khi x-2=0

=>x=2

d: \(D=-x^2+6x-11\)

\(=-\left(x^2-6x+11\right)\)

\(=-\left(x^2-6x+9+2\right)\)

\(=-\left(x-3\right)^2-2< =-2\forall x\)

Dấu '=' xảy ra khi x-3=0

=>x=3

cute
Xem chi tiết
Nguyễn Huy Tú
15 tháng 2 2022 lúc 21:52

a, \(A=-\left(x^2+8x+16-16\right)+5=-\left(x+4\right)^2+21\le21\forall x\)

Dấu ''='' xảy ra khi x = - 4

Vậy GTLN của A là 21 tại x = -4 

b, \(B=-\left(x^2-2x+1\right)-\left(4y^2+4y+1\right)+7\)

\(=-\left(x-1\right)^2-\left(2y+1\right)^2+7\le7\forall x;y\)

Dấu ''='' xảy ra khi x = 1 ; y = -1/2 

Vậy GTLN của B là 7 tại x = 1 ; y = -1/2 

Nguyễn Minh Anh
15 tháng 2 2022 lúc 21:51

TK

undefined

Dark_Hole
15 tháng 2 2022 lúc 21:52

A = 5 − 8 x − x 2

= -(x2+8x+16)+21

= 21-(x+4)2 

Với mọi x thì ( x + 4 ) 2 >= 0

=> 21−(x+4)2=<21 Hay A=<21

Để A=21 thì (x+4)2=0

=>x+4=0

=> x = − 4

Câu sau để anh nghĩ đã nhé