Tìm tất cả các giá trị thực m để phương trình x+1=\(\sqrt[m]{2x^2+1}\) có hai nghiệm phân biệt
Cho phương trình \(\sqrt{2x+m}=x-1\). Tất cả các giá trị của m để phương trình có hai nghiệm phân biệt lớn hơn 1
Xét với \(x>1\)
\(\sqrt{2x+m}=x-1\)
\(\Leftrightarrow2x+m=x^2-2x+1\)
\(\Leftrightarrow x^2-4x+1=m\)
Xét hàm \(f\left(x\right)=x^2-4x+1\) với \(x>1\)
\(-\dfrac{b}{2a}=2\) ; \(f\left(1\right)=-2\) ; \(f\left(2\right)=-3\)
\(\Rightarrow\) Pt có 2 nghiệm pb lớn hơn 1 khi \(-3< m< -2\)
Câu 1: Tìm tất cả các giá trị cuả tham số m để phương trình \(4\sqrt{x^2-4x+5} =x^2-4x+2m-1\) có 4 nghiệm phân biệt
Câu 2: Tìm các giá trị của tham số m sao cho tổng các bình phương hai nghiệm của phương trình \((m-3)x^2+2x-4=0\) bằng 4
Câu 3: Cho tam giác ABC có \(BC=a, AC=b, AB=c\) và I là tâm đường tròn nội tiếp tam giác. Chứng minh rằng: \(a\overrightarrow{IA}+b\overrightarrow{IB}+c\overrightarrow{IC}=\overrightarrow{0}\)
Câu 4: Cho tam giác ABC. Gọi D,I lần lượt là các điểm xác định bởi \(3\overrightarrow{BD}-\overrightarrow{BC}=\overrightarrow{0}\) và \(\overrightarrow{IA}+\overrightarrow{ID}=\overrightarrow{0}\). Gọi M là điểm thỏa mãn \(\overrightarrow{AM}=x\overrightarrow{AC}\) (x∈R)
a) Biểu thị \(\overrightarrow{BI}\) theo \(\overrightarrow{BA}\) và \(\overrightarrow{BC}\)
b) Tìm x để ba điểm B,I,M thẳng hàng
1.
Đặt \(\sqrt{x^2-4x+5}=t\ge1\Rightarrow x^2-4x=t^2-5\)
Pt trở thành:
\(4t=t^2-5+2m-1\)
\(\Leftrightarrow t^2-4t+2m-6=0\) (1)
Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm pb đều lớn hơn 1
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=4-\left(2m-6\right)>0\\\left(t_1-1\right)\left(t_2-1\right)>0\\\dfrac{t_1+t_2}{2}>1\\\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}10-2m>0\\t_1t_2-\left(t_1+t_1\right)+1>0\\t_1+t_2>2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m< 5\\2m-6-4+1>0\\4>2\end{matrix}\right.\) \(\Leftrightarrow\dfrac{9}{2}< m< 5\)
2.
Để pt đã cho có 2 nghiệm:
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\\Delta'=1+4\left(m-3\right)\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne3\\m\ge\dfrac{11}{4}\end{matrix}\right.\)
Khi đó:
\(x_1^2+x_2^2=4\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\dfrac{4}{\left(m-3\right)^2}+\dfrac{8}{m-3}=4\)
\(\Leftrightarrow\dfrac{1}{\left(m-3\right)^2}+\dfrac{2}{m-3}-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{m-3}=-1-\sqrt{2}\\\dfrac{1}{m-3}=-1+\sqrt{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}m=4-\sqrt{2}< \dfrac{11}{4}\left(loại\right)\\m=4+\sqrt{2}\end{matrix}\right.\)
3.
Nối AI kéo dài cắt BC tại D thì D là chân đường vuông góc của đỉnh A trên BC
\(\Rightarrow\dfrac{DB}{DC}=\dfrac{AB}{AC}=\dfrac{c}{b}\)
\(\Rightarrow\overrightarrow{BD}=\dfrac{c}{b}\overrightarrow{DC}\)
\(\Leftrightarrow\overrightarrow{ID}-\overrightarrow{IB}=\dfrac{c}{b}\left(\overrightarrow{IC}-\overrightarrow{ID}\right)\)
\(\Leftrightarrow b.\overrightarrow{IB}+\overrightarrow{c}.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}\) (1)
Mặt khác:
\(\dfrac{ID}{IA}=\dfrac{BD}{AB}=\dfrac{CD}{AC}=\dfrac{BD+CD}{AB+AC}=\dfrac{BC}{AB+AC}=\dfrac{a}{b+c}\)
\(\Leftrightarrow\left(b+c\right)\overrightarrow{ID}=-a.\overrightarrow{IA}\) (2)
(1); (2) \(\Rightarrow a.\overrightarrow{IA}+b.\overrightarrow{IB}+c.\overrightarrow{IC}=\left(b+c\right)\overrightarrow{ID}-\left(b+c\right)\overrightarrow{ID}=\overrightarrow{0}\)
Hình bên là đồ thị của hàm số y = 2 x + 1 x - 1 Tìm tất cả các giá trị thực của tham số m để phương trình 2 x + 1 | x - 1 | = m có hai nghiệm phân biệt.
A. m > 2
B. Không có giá trị của m.
C. m > -2
D. Với mọi m.
Tìm tất cả các giá trị thực của m để phương trình x + 1 = m 2 x 2 + 1 có hai nghiệm phân biệt?
A. - 2 2 < m < 6 6
B. m < 2 2
D. m > 6 6
D. 2 2 < m < 6 6
Đáp án D
Phương trình x + 1 = m 2 x 2 + 1 ⇔ m = x + 1 2 x 2 + 1 ; ∀ x ∈ ℝ
Xét hàm số f x = x + 1 2 x 2 + 1 trên ℝ có f ' x = 1 - 2 x 2 x 2 + 1 3 = 0 ⇔ x = 1 2 .
Tính các giá trị f 1 2 = 6 2 ; lim x → + ∞ f x = 1 2 ; lim x → - ∞ f x = - 1 2
Khi đó, để f(x) = m có 2 nghiệm phân biệt ⇔ 2 2 < m < 6 6 .
Tìm tất cả các giá trị thực của tham số m để phương trình x . log 2 x − 1 + m = m . log 2 x − 1 + x có hai nghiệm thực phân biệt.
A. m > 1 v à m ≠ 2
B. m ≠ 3
C. m > 1 v à m ≠ 3
D. m > 1
Đáp án C
Ta có: x . log 2 x − 1 + m = m . log 2 x − 1 + x
⇔ x − m . log 2 x − 1 = x − m .
⇔ x − m log 2 x − 1 − 1 ⇔ x − m = 0 log 2 x − 1 = 1 ⇔ x = m x − 1 = 2 ⇔ x = m x = 3 *
Để phương trình đã cho có 2 nghiệm phân biệt ⇔ * có nghiệm duy nhất x > 1 ; x ≠ 3. Vậy m > 1 v à m ≠ 3 là giá trị cần tìm.
tìm tất cả các giá trị của tham số m để phương trình sau √x^2 + 2x +3m = 2x+1 có hai nghiệm phân biệt
\(PT\Leftrightarrow x^2+2x+3x=4x^2+4x+1\\ \Leftrightarrow3x^2+2x+1-3m=0\\ \text{PT có 2 nghiệm pb}\Leftrightarrow\Delta'>0\\ \Leftrightarrow1-3\left(1-3m\right)>0\\ \Leftrightarrow1+9m-1>0\Leftrightarrow m>0\)
tìm tất cả các giá trị của tham số m để phương trình sau √x^2 + 2x +3m = 2x+1 có hai nghiệm phân biệt
\(PT\Leftrightarrow x^2+2x+3m=4x^2+4x+1\\ \Leftrightarrow3x^2+2x+1-3m=0\)
PT có 2 nghiệm phân biệt \(\Leftrightarrow\Delta'=1-3\left(1-3m\right)>0\)
\(\Leftrightarrow9m-2>0\\ \Leftrightarrow m>\dfrac{2}{9}\)
Vậy PT có 2 nghiệm pb \(\Leftrightarrow m>\dfrac{2}{9}\)
Hình bên là đồ thị hàm số y = 2 x + 1 x - 1 Tìm tất cả các giá trị thực của tham số m để phương trình | 2 x + 1 | | x - 1 | = 2 m có hai nghiệm phân biệt
A.Với mọi m
B. Không có giá trị của m
C.
D.
Đáp án D
Từ đồ thị đã cho ta suy ra đồ thị hàm số
Từ đó ta có kết quả thỏa mãn yêu cầu bài toán là
Hình vẽ dưới đây là đồ thị của hàm số y = 3 x - 2 x - 1 . Tìm tất cả các giá trị thực của tham số m để phương trình 3 x - 2 x - 1 = m có hai nghiệm phân biệt?
A. -3 < m < 0
B. m < -3
C. 0 < m < 3
D. m > 3
Tìm tất cả các giá trị thực của m để phương trình \(4^x-2^{x+1}+m=0\) có 2 nghiệm thực phân biệt
Đặt \(t=2^x>0\).
Phương trình ban đầu trở thành: \(t^2-2t+m=0\) (*)
Để phương trình ban đầu có 2 nghiệm phân biệt thì (*) phải có 2 nghiệm phân biệt dương: \(\left\{{}\begin{matrix}\Delta'>0\\t_1+t_2>0\\t_1t_2>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1-m>0\\2>0\left(đúng\right)\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)