Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tuân Xuân
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 8 2023 lúc 14:23

a^3+b^3+c^3=3abc

=>(a+b)^3+c^3-3ab(a+b)-3bac=0

=>(a+b+c)(a^2+2ab+b^2-ac-bc+c^2)-3ab(a+b+c)=0

=>(a+b+c)(a^2+b^2+c^2-ab-ac-bc)=0

=>a^2+b^2+c^2-ab-bc-ac=0

=>2a^2+2b^2+2c^2-2ab-2bc-2ac=0

=>(a-c)^2+(a-b)^2+(b-c)^2=0

=>a=b=c

=>A=(1+b/b)(1+b/b)(1+c/c)

=2*2*2=8

Nguyễn Tùng Anh
Xem chi tiết
Nguyễn Việt Lâm
17 tháng 1 2022 lúc 22:15

\(a^3+b^3+c^3-3abc=1\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)

Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)

(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)

\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)

\(\Rightarrow a^2+b^2+c^2\ge1\)

huongkarry
Xem chi tiết
o0o I am a studious pers...
24 tháng 7 2017 lúc 20:44

\(a^3+b^3+c^3\ge3\sqrt[3]{a^3b^3c^3}=3abc\)

Dấu bằng xảy ra \(\Leftrightarrow a=b=c\)

ta có : \(a^3+b^3+c^3=3abc\Rightarrow a=b=c\)

\(\Rightarrow\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)=2.2.2=8\)

tth_new
6 tháng 2 2019 lúc 20:04

o0o I am a studious person o0o: Theo em thì: \(a^3+b^3+c^3=3abc\Rightarrow a^3+b^3+c^3-3abc=0\)

\(\Rightarrow\orbr{\begin{cases}a=b=c\\a+b+c=0\end{cases}}\) chứ ạ?

shitbo
6 tháng 2 2019 lúc 20:15

Có Thực Dương đâu mak BĐT Cô-si???

Tran Thi Xuan
Xem chi tiết
alibaba nguyễn
8 tháng 8 2017 lúc 13:23

Ta có:

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=0\)

\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca\)

Ta lại có: 

\(a^2+b^2+c^2\ge ab+bc+ca\)

Dấu = xảy ra khi \(a=b=c\)

Thế vào N ta được

\(N=\frac{a^{2015}+b^{2015}+c^{2015}}{\left(a+b+c\right)^{2015}}=\frac{3a^{2015}}{3^{2015}.a^{2015}}=\frac{1}{a^{2014}}\)

Mai Phương
Xem chi tiết
Mai Phương
18 tháng 4 2016 lúc 23:17

a(a-b)=0 +b(b-c)+c(c-a)=0 suy ra (a-b)2+(b-c)2+(c-a)2=0 suy ra a=b=c

Thay vào A ta đc min A=\(\frac{17}{4}\) tại a=b=c=\(\frac{1}{2}\)

Phạm Văn An
18 tháng 4 2016 lúc 23:27

Từ giả thiết => a = 0 hoặc a = b

* TH1: a = 0

 b(b-c)+c(c-a)=0  <=> b(b-c)+c2=0 <=> b2 -bc + c2 =0 <=> \(\left(b-\frac{c}{2}\right)^2+\frac{3c^2}{4}=0\)

Điều này xảy ra khi và chỉ khi b - c/2 =0 và c = 0 => b = c = 0

Vậy a = b = c = 0 => A = 5

* TH2: a = b

 b(b-c)+c(c-a)=0 <=> b(b-c)+c(c-b)=0 <=> b2 - 2bc + c2 =0 <=> (b-c)2 =0=> b = c

Vậy a =b=c => A = a3 + a+a3 - 3a3 + 3a2 - 3a + 5

                          = 3a2 - 3a + 5 = (3a2 - 3a + 3/4) + 17/4 = 3. (a-1/2)2 + 17/4

Để A nhỏ nhất => a -1/2 =0 => a = 1/2 => Amin = 17/4  

17/4 < 5 => Vậy Amin = 17/4 khi a = b = c = 1/2

em ơi
Xem chi tiết
Nguyễn Việt Lâm
27 tháng 12 2020 lúc 11:15

ĐKXĐ: \(abc\ne0\)

\(a^3+b^3+3ab\left(a+b\right)+c^3-3ab\left(a+b\right)-3abc=0\)

\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2+2ab-ac-bc\right)-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\left(a+b+c\right)\left[\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a+b+c=0\\a=b=c\end{matrix}\right.\)

TH1: \(a+b+c=0\)

\(P=\dfrac{\left(a+b\right)\left(b+c\right)\left(c+a\right)}{abc}=\dfrac{\left(-c\right)\left(-a\right)\left(-b\right)}{abc}=-1\)

TH2: \(a=b=c\Rightarrow P=\left(1+1\right)\left(1+1\right)\left(1+1\right)=8\)

Nguyễn Thế Anh
Xem chi tiết
Kaneki Ken
17 tháng 12 2019 lúc 21:25

Cái này biến đổi dài vl ra í e :>>

Ta có a^3 + b^3 + c^3 -3abc=0 

=> (a+b)^3 +c^3 -3a^2b-3ab^2 -3abc=0

=> (a+b+c).[(a+b)^2 - (a+b).c +c^2] - 3ab.(a+b+c)=0

=> (a+b+c).(a^2+2ab+b^2 - ac - bc +c^2 - 3ab)=0

=> (a+b+c).(a^2+b^2+c^2-ab-bc-ca)=0

=> a+b+c=0 hoặc a^2+b^2+c^2-ab-bc-ca=0

Mà a,b,c dương nên a+b+c>0 => a^2+b^2+c^2-ab-bc-ca=0

=> 2a^2 + 2b^2 + 2c^2 - 2ab -2bc -2ca=0

=> (a-b)^2 + (b-c)^2 + (c-a)^2=0

Đến đây easy r e nhé, có j ko hiểu hỏi lại vì nhiều chỗ hơi tắt

Khách vãng lai đã xóa
Nguyễn Thế Anh
17 tháng 12 2019 lúc 21:30

thank . Mấy chỗ đó hiểu dc

Khách vãng lai đã xóa
Nguyễn Phạm Hồng Anh
17 tháng 12 2019 lúc 21:30

\(a^3+b^3+c^3=3abc\)

\(\Rightarrow\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)=0\)

\(\Rightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=0\)

Mà a,b,c là các số nguyên dương

\(\Rightarrow a+b+c\ne0\)

\(\Rightarrow a^2+b^2+c^2-ab-ac-bc=0\)

\(\Rightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(a-c\right)^2=0\)

Vì \(\left(a-b\right)^2\ge0;\left(b-c\right)^2\ge0;\left(a-c\right)^2\ge0\)

Dấu "=" xảy ra khi

\(\hept{\begin{cases}a-b=0\\b-c=0\\a-c=0\end{cases}\Rightarrow\hept{\begin{cases}a=b\\b=c\\a=c\end{cases}\Rightarrow}a=b=c}\)

\(\Rightarrow A=\frac{a^{2018}}{b^{2018}}+\frac{b^{2018}}{c^{2018}}+\frac{c^{2018}}{a^{2018}}=1+1+1=3\)

Khách vãng lai đã xóa
Võ Quang Huy
Xem chi tiết
Nguyễn Linh Chi
21 tháng 3 2019 lúc 23:05

Câu hỏi của Trần Thị Thùy Linh 2004 - Toán lớp 8 - Học toán với OnlineMath

EM tham khảo nhé!

Võ Quang Huy
21 tháng 3 2019 lúc 23:12

Thank you chụy

Nguyễn Linh Chi
21 tháng 3 2019 lúc 23:21

Tham khảo bài cô làm nhé! Bài của bạn làm một số chỗ chưa đúng!

Hồ Việt Hoàng
Xem chi tiết
? 12Yo.Sh00t3r
24 tháng 6 2023 lúc 21:23

ab2 hay là a2b2

? 12Yo.Sh00t3r
24 tháng 6 2023 lúc 21:49

 

từ a^3 + b^3 + c^3 =3abc => a+b+c = 0 

=> a+b= -c  <=> c^2 = (a+b)^2 

tương tự với -b và -a 

=> P = ab^2/a^2+b^2-a^2-2ab-b^2 + bc^2/b^2+c^2-b^2-2bc-c^2 + ca^2/c^2 + a^2 - c^2-2ac-a^2

= -a/2 - b/2 - c/2 = -1/2(a+b+c)=0