\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)\(ab\))
Mà: \(a+b+c=0\)
Vậy: \(A=0.\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(A=0\)
Hk tốt
Dòng trên cùng mình đánh nhầm chỗ ab) nhé
\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)\(ab\))
Mà: \(a+b+c=0\)
Vậy: \(A=0.\left(a^2+b^2+c^2-ab-ac-bc\right)\)
\(A=0\)
Hk tốt
Dòng trên cùng mình đánh nhầm chỗ ab) nhé
Cho a, b, c là 3 số thực khác 0 thỏa mãn điều kiện:
a3+b3+c3=3abc. Tính giá trị của biểu thức:
M=(1+ a/b) (1+ b/c) (1+ c/a)
Cho các số thực dương a, b, c, thỏa mãn a^3+b^3+c^3 = 3abc
Tính giá trị của biểu thức N= a^2015+b^2015+c^2015 / (a+b+c)^2015
1. Cho các số a, b,c thỏa mãn a(a-b)=0 +b(b-c)+c(c-a)=0
Tính giá trị nhỏ nhất của biểu thức A=a3+b3+c3-3abc+3ab-3c+5
cho a,b,c là các số nguyên dương thỏa mãn a^3+b^3+c^3=3abc
tính giá trị biểu thức A=(a^2018)/(b^2018)+(b^2018)/(c^2018)+(c^2018)/(a^2018)
Cho các số a,b,c thỏa mãn : a(a-b) +b(b-c) +c(c-a) =0.
Tìm giá trị nhỏ nhất của biểu thức A= a^3 + b^3 + c^3 -3abc + 3ab -3c+5
Giúp mk nhanh vs!!!
Cho các số nguyên x,y thỏa mãn: a.(a-b) + b.(b-c) + c.(c-a) = 0
Tìm giá trị nhỏ nhất của biểu thức A= a3 + b3 + c3 – 3abc +3ab – 3c +5
Cho a, b là các số khác 0 và thỏa mãn \(a^3+b^3+c^3=3abc\).
Tính giá trị của biểu thức:
\(A=\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
Cho a,b,c thỏa mãn điều kiện:\(a^3+b^3+c^3=3abc\)
Tính giá trị của biểu thức P=\(\frac{abc}{\left(a+b\right)\left(b+c\right)\left(a+c\right)}\)
Cho a, b, c là các số dương thỏa mãn \(a^3+b^3+c^3=3abc\). Tính giá trị biểu thức: \(P=\left(\frac{a}{b}-1\right)+\left(\frac{b}{c}-1\right)+\left(\frac{c}{a}-1\right)\)