Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tấn Dũng
Xem chi tiết
Hoàng Mỹ Linh
Xem chi tiết
Vongola Famiglia
21 tháng 7 2017 lúc 18:38

a đề sai hay sao mà vô nghiệm ?

b)Áp dụng BĐT Cauchy-Schwarz ta có:

\(VP^2=\left(\sqrt{2x+1}+\sqrt{17-2x}\right)^2\)

\(\le\left(1+1\right)\left(2x+1+17-2x\right)=36\)

\(\Rightarrow VP^2\le36\Rightarrow VP\le6\)

Lại có: \(VT=x^4-8x^3+17x^2-8x+22\)

\(=\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6\ge6\)

Thấy: \(VT\le VP=6\)\(\Rightarrow VT=VP=6\)

\(\Rightarrow\left(x-4\right)^4+8\left(x-4\right)^3+17\left(x-4\right)^2+6=6\)

Suy ra x=4

ko hiểu chỗ nào ib nhé

Minh Quân Nguyễn Huy
1 tháng 4 2019 lúc 21:41

lời giải của bạn trên có 1 xíu sai nhé

Là BĐT Bu-nhi-a Cốp-xki chứ ạ ?

Cô gái thất thường (Ánh...
Xem chi tiết
Trương Thanh Nhân
11 tháng 7 2019 lúc 21:23

\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)     ( SỬA ĐỀ)

\(\sqrt{x-1-2.2.\sqrt{x-1}+4}+\sqrt{x-1-2.3.\sqrt{x-1}+9}=1\)

\(|x-1-2|+|x-1-3|=1\)

\(|x-3|+|x-4|=1\)

Với  \(x\le3\)thì  PT thành  \(3-x+4-x=1\) \(\Rightarrow-2x=-6\Rightarrow x=3\)(thõa mãn)

Với  \(3\le x< 4\)thì PT thành  \(x-3+4-x=1\Leftrightarrow0x=0\Rightarrow\)Đúng với mọi x từ \(3\le x< 4\)

Với  \(x\ge4\)thì PT thành  \(x-3+x-4=1\Leftrightarrow2x=8\Leftrightarrow x=4\)(thõa mãn)

Vậy  \(3\le x\le4\)

Đinh Đức Hùng
12 tháng 7 2019 lúc 6:48

Dấu căn của x-1 đâu bạn j eiiiii

Giúp mik với mấy bạn ơi
Xem chi tiết
Trên con đường thành côn...
27 tháng 7 2021 lúc 18:53

undefined

Trên con đường thành côn...
27 tháng 7 2021 lúc 18:54

undefined

Trên con đường thành côn...
27 tháng 7 2021 lúc 19:00

undefined

aaaaaaaa
Xem chi tiết
Bích Lê
Xem chi tiết
Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:43

a.

\(3\sqrt{-x^2+x+6}\ge2\left(1-2x\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-x^2+x+6\ge0\\1-2x< 0\end{matrix}\right.\\\left\{{}\begin{matrix}1-2x\ge0\\9\left(-x^2+x+6\right)\ge4\left(1-2x\right)^2\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}-2\le x\le3\\x>\dfrac{1}{2}\end{matrix}\right.\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\25\left(x^2-x-2\right)\le0\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}< x\le3\\\left\{{}\begin{matrix}x\le\dfrac{1}{2}\\-1\le x\le2\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow-1\le x\le3\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:48

b.

ĐKXĐ: \(x\ge0\)

\(\Leftrightarrow\sqrt{2x^2+8x+5}-4\sqrt{x}+\sqrt{2x^2-4x+5}-2\sqrt{x}=0\)

\(\Leftrightarrow\dfrac{2x^2+8x+5-16x}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-4x+5-4x}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\dfrac{2x^2-8x+5}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{2x^2-8x+5}{\sqrt{2x^2-4x+5}+2\sqrt{x}}=0\)

\(\Leftrightarrow\left(2x^2-8x+5\right)\left(\dfrac{1}{\sqrt{2x^2+8x+5}+4\sqrt{x}}+\dfrac{1}{\sqrt{2x^2-4x+5}+2\sqrt{x}}\right)=0\)

\(\Leftrightarrow2x^2-8x+5=0\)

\(\Leftrightarrow x=\dfrac{4\pm\sqrt{6}}{2}\)

Nguyễn Việt Lâm
16 tháng 4 2022 lúc 19:52

Câu b còn 1 cách giải nữa:

Với \(x=0\) không phải nghiệm

Với \(x>0\) , chia 2 vế cho \(\sqrt{x}\) ta được:

\(\sqrt{2x+8+\dfrac{5}{x}}+\sqrt{2x-4+\dfrac{5}{x}}=6\)

Đặt \(\sqrt{2x-4+\dfrac{5}{x}}=t>0\Leftrightarrow2x+8+\dfrac{5}{x}=t^2+12\)

Phương trình trở thành:

\(\sqrt{t^2+12}+t=6\)

\(\Leftrightarrow\sqrt{t^2+12}=6-t\)

\(\Leftrightarrow\left\{{}\begin{matrix}6-t\ge0\\t^2+12=\left(6-t\right)^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}t\le6\\12t=24\end{matrix}\right.\)

\(\Rightarrow t=2\)

\(\Rightarrow\sqrt{2x-4+\dfrac{5}{x}}=2\)

\(\Leftrightarrow2x-4+\dfrac{5}{x}=4\)

\(\Rightarrow2x^2-8x+5=0\)

\(\Leftrightarrow...\)

Lê Kiều Trinh
Xem chi tiết
Nguyễn Hoàng Minh
14 tháng 10 2021 lúc 8:12

\(a,ĐK:x\ge1\\ PT\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}=-2\\ \Leftrightarrow-2\sqrt{x-1}=-2\Leftrightarrow\sqrt{x-1}=1\\ \Leftrightarrow x-1=1\Leftrightarrow x=2\left(tm\right)\\ b,ĐK:x\ge0\\ PT\Leftrightarrow\dfrac{1}{3}\sqrt{2x}-2\sqrt{2x}+3\sqrt{2x}=12\\ \Leftrightarrow\dfrac{4}{3}\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=9\\ \Leftrightarrow2x=81\Leftrightarrow x=\dfrac{81}{2}\left(tm\right)\)

Kinder
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:06

1.

ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow3x^2-3x+\left(x+1-\sqrt{3x+1}\right)+\left(x+2-\sqrt{5x+4}\right)=0\)

\(\Leftrightarrow3\left(x^2-x\right)+\dfrac{x^2-x}{x+1+\sqrt{3x+1}}+\dfrac{x^2-x}{x+2+\sqrt{5x+4}}=0\)

\(\Leftrightarrow\left(x^2-x\right)\left(3+\dfrac{1}{x+1+\sqrt{3x+1}}+\dfrac{1}{x+2+\sqrt{5x+4}}\right)=0\)

\(\Leftrightarrow x^2-x=0\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
22 tháng 2 2021 lúc 17:10

2.

Đặt \(\left\{{}\begin{matrix}2x=a\\\sqrt[3]{2-8x^3}=b\end{matrix}\right.\)

Ta được hệ:

\(\left\{{}\begin{matrix}\left(2a-1\right)b=a\\a^3+b^3=2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=2ab\\\left(a+b\right)^3-3ab\left(a+b\right)=2\end{matrix}\right.\)

\(\Rightarrow8\left(ab\right)^3-6\left(ab\right)^2=2\)

\(\Leftrightarrow\left(ab-1\right)\left[4\left(ab\right)^2+ab+1\right]=0\)

\(\Leftrightarrow ab=1\Rightarrow a+b=2\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2\\ab=1\end{matrix}\right.\) \(\Leftrightarrow a=b=1\)

\(\Rightarrow2x=1\Rightarrow x=\dfrac{1}{2}\)

Phùng Gia Bảo
Xem chi tiết
Tran Le Khanh Linh
24 tháng 3 2020 lúc 19:29

\(3\sqrt{8x^2+3}-8x=6\sqrt{2x^2-2x+1}-1\)

\(\Leftrightarrow3\left(\sqrt{8x^2+3}-2\sqrt{2x^2-2x+1}\right)-8x+1=0\)

\(\Leftrightarrow\frac{3\left(8x-1\right)}{\sqrt{8x^2+1}+2\sqrt{2x^2-2x+1}}-\left(8x-1\right)=0\)

\(\Leftrightarrow\left(8x-1\right)\left[\frac{3}{\sqrt{8x^2+3}+2\sqrt{2x^2-2x+1}}-1\right]=0\)

<=> 8x-1=0

<=> x=\(\frac{1}{8}\)

Khách vãng lai đã xóa