Tìm nghiệm nguyên:
y(x-1)=x2+2
Bài 1 : tìm x ; y nguyên dương
2xy + x + y = 83
Bài 2 tìm nghiệm nguyên của phương trình :
a ) x2 + 2y2 + 3xy - x - y + 3 = 0
b ) 6x2y3 + 3x2 - 10y3 = -2
Tìm nghiệm nguyên của phương trình: x 2 − 2 y ( x − y ) = 2 ( x + 1 )
x 2 − 2 y ( x − y ) = 2 ( x + 1 ) < = > x 2 − 2 ( y + 1 ) x + 2 ( y 2 − 1 ) = 0 ( 1 )
Để phương trình (1) có nghiệm nguyên x thì D' theo y phải là số chính phương
+ Nếu Δ ' = 4 = > ( y − 1 ) 2 = 0 < = > y = 1 thay vào phương trình (1) ta có :
x 2 − 4 x = 0 < = > x ( 2 − 4 ) < = > x = 0 x − 4
+ Nếu Δ ' = 1 = > ( y − 1 ) 2 = 3 < = > y ∉ Z .
+ Nếu Δ ' = 0 = > ( y − 1 ) 2 = 4 < = > y = 3 y = − 1
+ Với y = 3 thay vào phương trình (1) ta có: x 2 − 8 x + 16 = 0 < = > ( x − 4 ) 2 = 0 < = > x = 4
+ Với y = -1 thay vào phương trình (1) ta có: x 2 = 0 < = > x = 0
Vậy phương trình (1) có 4 nghiệm nguyên ( x ; y ) ∈ {(0;1);(4;1);(4;3);(0;-1)}
Tìm nghiệm nguyên dương của phương trình sau:
(2x + 5y + 1)(2|x| + y + x2 + x) = 105
Do VP là số lẻ
<=> 2x + 5y + 1 là số lẻ và \(2^{\left|x\right|}+y+x^2+x\) là số lẻ
<=> y chẵn và \(2^{\left|x\right|}+y+x\left(x+1\right)\) là số lẻ
=> \(2^{\left|x\right|}\) là số lẻ (do y chẵn và x(x+1) chẵn)
=> x = 0
PT <=> \(\left(5y+1\right)\left(1+y\right)=105\)
<=> y = 4 (thử lại -> thỏa mãn)
KL: x = 0; y = 4
tìm nghiệm nguyên của pt:(y+2)x2+1=y2
PT <=> \(\left(y+2\right)x^2=y^2-1\)
- Nếu y = -2 <=> \(\left(-2\right)^2-1=0\) (vô lí)
=> \(y\ne-2\)
PT <=> \(x^2=\dfrac{y^2-1}{y+2}\)
Có \(x\in Z\Rightarrow x^2\in Z\)
=> \(\dfrac{y^2-1}{y+2}\in Z\)
=> \(y^2-1⋮y+2\)
=> \(y\left(y+2\right)-2\left(y+2\right)+3⋮y+2\)
=> \(3⋮y+2\)
Ta có bảng
y+2 | 1 | 3 | -1 | -3 |
y | -1 | 1 | -3 | -5 |
x | 0 (Tm) | 0 (Tm) | \(\varnothing\) | \(\varnothing\) |
KL: Vậy phương trình có tập nghiệm\(\left(x;y\right)=\left\{\left(0;1\right);\left(0;-1\right)\right\}\)
Cho hàm số y = f x = 2 x 2 − 7 x + 6 x − 2 k h i x < 2 a + 1 − x 2 + x k h i x ≥ 2 . Biết a là giá trị để hàm số f(x) liên tục tại x 0 = 2 , tìm nghiệm nguyên của bất phương trình − x 2 + a x + 7 4 > 0 .
A. 1
B. 4
C. 3
D. 2
Đáp án D
Ta có lim x → 2 − f x = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − 2 x 2 − 7 x + 6 x − 2 = lim x → 2 − − 2 x − 3 = − 1
Và lim x → 2 − f x = lim x → 2 − a + 1 − x 2 + x = a − 1 4 ; f 2 = a − 1 4 .
Theo bài ra, ta có lim x → 2 + f x = lim x → 2 − f x = f 2 ⇒ a = − 3 4
Do đó, bất phương trình − x 2 + a x + 7 4 > 0 ⇔ − x 2 − 3 4 x + 7 4 > 0 ⇔ − 7 4 < x < 1.
Giải pt nghiệm nguyên:
1) 3(x2-xy+y2)=7(x+y)
2) 5(x2+xy+y2)=7(x+2y)
x2-(m+2)x+m2-1=0
Gọi x1,x2 là 2 nghiệm của phương trình. Tìm m thỏa mãn x1-x2=2
Tìm giá trị nguyên nhỏ nhất của m để pt có 2 nghiệm khác nhau
Δ=(m+2)^2-4(m^2-1)
=m^2+4m+4-4m^2+4
=-3m^2+4m+8
Để phương trình có hai nghiệm thì -3m^2+4m+8>=0
=>\(\dfrac{2-2\sqrt{7}}{3}< =m< =\dfrac{2+2\sqrt{7}}{3}\)
x1-x2=2
=>(x1-x2)^2=4
=>(x1+x2)^2-4x1x2=4
=>(m+2)^2-4(m^2-1)=4
=>-3m^2+4m+8=4
=>-3m^2+4m+4=0
=>m=2 hoặc m=-2/3
Giải pt nghiệm nguyên:
1. x2+y2=(x-y)(xy+2)+9
2. xy=p(x+y) với p là số nguyên tố
3. x3+y3=2022
\(pt< =>\left(x-y\right)^2+xy=\left(x-y\right)\left(xy+2\right)+9\)
\(< =>\left(y-x\right)\left(xy+2+y-x\right)+xy+2+y-x-\left(y-x\right)=11\)
\(< =>\left(y-x+1\right)\left(xy+2+y-x\right)-\left(y-x+1\right)=10\)
\(< =>\left(x-y+1\right)\left(x-y-1-xy\right)=10\)
đến đây giải hơi bị khổ =))
Tìm nghiệm nguyên của phương trình : x2 - xy +y2 = x-y
<=>x^2+y^2-x-y-xy=0
<=>2x^2+2y^2-2x-2y-2xy=0
<=>(x-y)^2+(x-1)^2+(y-1)^2=2
mà 2=0+1+1=1+0+1=1+1+0
(phần này tách số 2 ra thành tổng 3 số chính phương)
Xét trường hợp 1:
(x-y)^2=0
(x-1)^2=1
(y-1)^2=1
Giải ra ta được x=2, y=2
Tương tự xét các trường hợp còn lại.
Kết quả: 5 nghiệm: (2;2) ; (1;0) ; (1;2) ; (0;1) ; (2;1)
x2 - xy + y2 = x - y
<=> x2 - xy + y2 - x + y = 0
<=> x ( x - y) + y2 - ( x - y) = 0
<=> (x-1)(x-y)y2 =0
Giải phương trình nghiệm nguyên 2x+5y+1)(2|x|+y+x+x2)=105