Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyên Cao
Xem chi tiết
Phương Twinkle
Xem chi tiết
Phương Thùy
Xem chi tiết
Phương Thùy
4 tháng 3 2021 lúc 19:18

mọi người giúp em với ạ em cần gấp

 

Huy Nguyen
4 tháng 3 2021 lúc 19:23

.

Huy Nguyen
4 tháng 3 2021 lúc 19:23

Lời giải:

a)

Theo tính chất tiếp tuyến thì

OB⊥BD,OC⊥CD⇒∠OBD=∠OCD=900

⇒∠OBD+∠OCD=1800

Do đó tứ giác OBDC nội tiếp.

b) Vì ID∥AB nên ∠CID=∠CAB(1) (hai góc đồng vị)

Mặt khác theo tính chất hai tiếp tuyến cắt nhau ta dễ thấy OD là đường phân giác của góc ∠BOC

Do đó: ∠DOC=12∠BOC=12 cung BC=∠CAB(2)

Từ 

Nguyễn Kim Mai
Xem chi tiết
Tran Phut
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 10 2023 lúc 22:55

1: ΔABC vuông tại A 

nên ΔABC nội tiếp đường tròn đường kính BC

=>O là trung điểm của BC

ΔOAD cân tại O

mà OI là đường cao

nên I là trung điểm của AD

Xét ΔABC vuông tại A có AI là đường cao

nên \(IA^2=IB\cdot IC\)

=>\(IA\cdot ID=IB\cdot IC\)

2:

a: AB=AC

OB=OC

Do đó: AO là đường trung trực của BC

=>AO vuông góc BC tại trung điểm của BC

=>AO vuông góc BC tại H và H là trung điểm của BC

b: Xét (O) có

\(\widehat{BAC}\) là góc nội tiếp chắn cung BC

Do đó: \(\widehat{BOC}=2\cdot\widehat{BAC}=120^0\)

ΔOBC cân tại O

mà OH là đường cao

nên OH là phân giác của góc BOC

=>\(\widehat{BOH}=\dfrac{120^0}{2}=60^0\)

c: Xét ΔAHB vuông tại H có

\(sinB=\dfrac{AH}{AB}\)

=>\(\dfrac{6}{AB}=\dfrac{\sqrt{3}}{2}\)

=>\(AB=4\sqrt{3}\left(cm\right)\)

=>\(BC=4\sqrt{3}\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot AH\cdot BC=\dfrac{1}{2}\cdot6\cdot4\sqrt{3}=12\sqrt{3}\left(cm^2\right)\)

Thiên Vũ Ngọc
Xem chi tiết
Hiển Bùi
Xem chi tiết
Trung Anh
15 tháng 3 2022 lúc 21:42

lx

Hoàng Minh Hằng
15 tháng 3 2022 lúc 21:42

lỗi 

huong duong
Xem chi tiết
huong duong
Xem chi tiết
Dũng Nguyễn tiến
Xem chi tiết
Lê Thị Thục Hiền
7 tháng 6 2021 lúc 12:52

a) Có \(\widehat{BFC}=\widehat{CKB}=90^0\)

=> Tứ giác BCFK nội tiếp

b)Có \(\widehat{BCK}=\widehat{BFK}\)( vì tứ giác BCFK nội tiếp )

mà \(\widehat{BCE}=\widehat{BDE}=\dfrac{1}{2}sđ\stackrel\frown{EB}\)

=> \(\widehat{BFK}=\widehat{BDE}\) mà hai góc nằm ở vị trí hai góc đồng vị

=> KF//DE